Skip to main content
Log in

Numerical study on the performance of mixed flow blood pump with superhydrophobic surface

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To meet the clinical status of the wide application of percutaneous mechanical circulatory support, this paper selects the mixed flow blood pump applied with superhydrophobic surface as the research object. The Navier slip model was used to simulate the slip characteristics of superhydrophobic surface, and the effects of the blade wrap angle and the superhydrophobic surface on the performance of the mixed flow blood pump are studied by numerical simulation. The results show that (1) considering the head, hydraulic efficiency, and hemolysis index of the blood pump, the optimal value of the blade wrap angle of the mixed flow blood pump in this paper is 60°. (2) The hydraulic efficiency of the blood pump with superhydrophobic surface is improved, and the maximum growth rate is about 13.9%; superhydrophobic surface can reduce the hemolysis index of blood pump under various working conditions, and the maximum reduction rate of hemolysis index of blood pump is 22.9%. (3) The variation trends of blood pump head, hydraulic efficiency, and hemolysis index with the increased rotating speed before and after setting superhydrophobic slip boundary conditions are the same as their original variation trends.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sheth S, Bandeali S, George J (2018) Bridge-to-bridge strategies with IABP, Impella, and TandemHeart. Mechanical Circulatory Support for Advanced Heart Failure: A Texas Heart Institute/Baylor College of Medicine Approach. https://doi.org/10.1007/978-3-319-65364-8_4

  2. Yun Z, Shi F, Xiang C, Tan JP (2010) Study on the injury principle of the blood prossure differevce in the mixed blood pump and its simulation analysis. Mach Des Res 26(03):29–32+48

    Google Scholar 

  3. Shu F, Tian R, Vandenberghe S, Antaki JF (2016) Experimental study of micro-scale Taylor vortices within a co-axial mixed-flow blood pump. Artif Organs 40(11):1071–1078

    Article  PubMed  Google Scholar 

  4. Qu Y, Guo Z, Zhang J, Zhang S, Li D (2022) Hemodynamic investigation and in vitro evaluation of a novel mixed-flow blood pump. Artif Organs. https://doi.org/10.1111/aor.14210

    Article  PubMed  Google Scholar 

  5. Luo J, Huang D, Xu B (2020) Numerical simulation and performance analysis of mixed flow blood pump. J Biol Eng 37(2):296–303

    Google Scholar 

  6. Martell MB, Rothstein JP, Perot JB (2010) An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys Fluids 22(6):065102

    Article  Google Scholar 

  7. Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L (2007) Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys Fluids 19(12):123601

    Article  Google Scholar 

  8. Ye Y, Liu Z, Liu W, Zhang D, Zhao H, Wang L, Li X (2018) Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel. Chem Eng J 348:940–951

    Article  CAS  Google Scholar 

  9. Zhang F, Zhao L, Chen H, Zhang F, Zhao L, Chen H, Xu S, Evans DG, Duan X (2008) Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew Chem 120(13):2500–2503

    Article  Google Scholar 

  10. Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A (2011) Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg Sci Technol Cold 67(1–2):58–67

    Article  Google Scholar 

  11. Ayan MS, Entezari M, Chini SF (2019) Experiments on skin friction reduction induced by superhydrophobicity and Leidenfrost phenomena in a Taylor-Couette cell. Int J Heat Mass Transf 132:271–279

    Article  Google Scholar 

  12. Min T, Kim J (2004) Effects of hydrophobic surface on skin-friction drag. Phys Fluids 16(7):L55–L58

    Article  CAS  Google Scholar 

  13. Voronov RS, Papavassiliou DV, Lee LL (2008) Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind Eng Chem Res 47(8):2455–2477

    Article  CAS  Google Scholar 

  14. Park H, Park H, Kim J (2013) A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys Fluids 25(11):110815

    Article  Google Scholar 

  15. Zhang S, Ouyang X, Li J, Gao S, Han S, Liu L, Wei H (2015) Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir 31(1):587–593

    Article  CAS  PubMed  Google Scholar 

  16. Haghighi MHS, Mirghavami SM, Ghorani MM, Riasi A, Chini SF (2020) A numerical study on the performance of a superhydrophobic coated very low head (VLH) axial hydraulic turbine using entropy generation method. Renew Energy 147:409–422

    Article  Google Scholar 

  17. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718

    Article  CAS  PubMed  Google Scholar 

  18. Falde EJ, Yohe ST, Colson YL, Grinstaff MW (2016) Superhydrophobic materials for biomedical applications. Biomaterials 104:87–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moradi S, Hadjesfandiari N, Toosi SF, Kizhakkedathu JN, Hatzikiriakos SG (2016) Effect of extreme wettability on platelet adhesion on metallic implants: from superhydrophilicity to superhydrophobicity. ACS Appl Mater Interfaces 8(27):17631–17641

    Article  CAS  PubMed  Google Scholar 

  20. Stepanoff AJ (1948) Centrifugal and axial flow pumps: theory, design, and application. John Wiley, New York

    Google Scholar 

  21. ANSYS, Inc. (2018) ANSYS fluent theory guide, Release 19.2. ANSYS, Inc., Canonsburg, PA

  22. Hsu PL, Graefe R, Boehning F, Wu C, Parker J (2014) Autschbach R, Steinseifer U, Hydraulic and hemodynamic performance of a minimally invasive intra-arterial right ventricular assist device. Int J Artif Organs 37(9):697–705

    Article  PubMed  Google Scholar 

  23. Thamsen B, Blümel B, Schaller J, Paschereit CO, Affeld K, Goubergrits L, Kertzscher U (2015) Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps. Artif Organs 39(8):651–659

    Article  PubMed  Google Scholar 

  24. Heck ML, Yen A, Snyder TA, O’Rear EA, Papavassiliou DV (2017) Flow-field simulations and hemolysis estimates for the food and drug administration critical path initiative centrifugal blood pump. Artif Organs 41(10):E129–E140

    Article  PubMed  Google Scholar 

  25. Malinauskas RA, Hariharan P, Day SW, Herbertson LH, Buesen M, Steinseifer U, Craven BA (2017) FDA benchmark medical device flow models for CFD validation. ASAIO J 63(2):150–160

    Article  PubMed  Google Scholar 

  26. Giersiepen M, Wurzinger LJ, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int J Artif Organs 13(5):300–306

    Article  CAS  PubMed  Google Scholar 

  27. Garon A, Farinas MI (2004) Fast three-dimensional numerical hemolysis approximation. Artif Organs 28(11):1016–1025

    Article  PubMed  Google Scholar 

  28. Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ (2012) Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J 58(4):363–372

    Article  PubMed  Google Scholar 

  29. Bludszuweit C (1995) Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 19(7):590–596

    Article  CAS  PubMed  Google Scholar 

  30. Heuser G, Opitz R (1980) A Couette viscometer for short time shearing of blood. Biorheology 17(1–2):17–24

    Article  CAS  PubMed  Google Scholar 

  31. Vinogradova OI (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56(1–4):31–60

    Article  CAS  Google Scholar 

  32. Nouri NM, Sekhavat S, Mofidi A (2012) Drag reduction in a turbulent channel flow with hydrophobic wall. J Hydrodynam B 24(3):458–466

    Article  Google Scholar 

  33. Daniello RJ (2013) Experimental studies of superhydrophobic surfaces in flow. University of Massachusetts Amherst. https://doi.org/10.7275/kbxk-q271

  34. Najafi E, Nejat A, Chini SF (2017) Effect of superhydrophobic surface on drag coefficient of SD7003 foil: a numerical approach. Modares Mech Eng 17(2):126–134

    Google Scholar 

  35. Jebauer S, Czerwińska J (2007) Implementation of velocity slip and temperature jump boundary conditions for microfluidic devices. Prace Instytutu Podstawowych Problemów Techniki PAN 5:1–50

    Google Scholar 

  36. Jebauer S, Czerwinska J (2014) Three-dimensional vortex structures on heated micro-lattice in a gas. Int J Heat Mass Transf 70:827–834

    Article  Google Scholar 

  37. Blake TD (1990) Slip between a liquid and a solid: DM Tolstoi’s (1952) theory reconsidered. Colloids Surf 47:135–145

    Article  CAS  Google Scholar 

  38. Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VS (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68(12):2859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Professor Seyed Farshid Chini from University of Tehran for the valuable discussion.

Funding

This study was supported by the Shanghai Rising-Star Program (Grant No. 19QC1400200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Qiu, H., Ma, J. et al. Numerical study on the performance of mixed flow blood pump with superhydrophobic surface. Med Biol Eng Comput 61, 3103–3121 (2023). https://doi.org/10.1007/s11517-023-02880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02880-5

Keywords

Navigation