Skip to main content
Log in

Collision avoidance analysis of human–robot physical interaction based on null-space impedance control of a dynamic reference arm plane

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

When the terminal upper limb rehabilitation robot is used for motion-assisted training, collisions between the manipulator links and the human upper limb may occur due to the null-space self-motion of the redundant manipulator. A null-space impedance control method based on a dynamic reference arm plane is proposed to realize collision avoidance during human–robot physical interaction motion for the collision problem between the manipulator links and the human upper limb. Firstly, a dynamic model and a Cartesian impedance controller of the manipulator are established. Then, the null-space impedance controller of the redundant manipulator is established based on the dynamic reference plane, which manages the null-space self-motion of the redundant manipulator to prevent collision between the manipulator links and the human upper limb. Finally, it is experimentally verified that the method proposed in this paper can effectively manage the null-space self-motion of the redundant manipulator, and thus achieve collision avoidance during the human–robot physical interaction motion. This research has significant potential in improving the safety and feasibility of motion-assisted training with rehabilitation robots.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y, Tee KP, Chan WL et al (2015) Continuous role adaptation for human–robot shared control. IEEE Trans Robot 31(3):672–681. https://doi.org/10.1109/TRO.2015.2419873

    Article  Google Scholar 

  2. Xia J, Jiang Z, Zhang T (2021) Feasible arm configurations and its application for human-like motion control of SRS-redundant manipulators with multiple constraints. Robotica 39(9):1617–1633. https://doi.org/10.1017/S0263574720001393

    Article  Google Scholar 

  3. Doty KL, Melchiorri C, Bonivento C (1993) A theory of generalized inverses applied to robotics. Ind Robot 12(1):1–19. https://doi.org/10.1177/027836499301200101

    Article  Google Scholar 

  4. Jiang Y, Yang C, Ju Z et al (2019) Obstacle avoidance of a redundant robot using virtual force field and null space projection. International Conference on Intelligent Robotics and Applications. pp 728–739 https://doi.org/10.1007/978-3-030-27526-6_64

  5. Daachi B, Madani T, Benallegue A (2012) Adaptive neural controller for redundant robot manipulators and collision avoidance with mobile obstacles. Neurocomputing 79:50–60. https://doi.org/10.1016/j.neucom.2011.10.001

    Article  Google Scholar 

  6. Nascimento H, Mujica M, Benoussaad M (2020) Collision avoidance interaction between human and a hidden robot based on kinect and robot data fusion. IEEE Robot Autom Let 6(1):88–94. https://doi.org/10.1109/LRA.2020.3032104

    Article  Google Scholar 

  7. Nascimento H, Mujica M, Benoussaad M (2020) Collision avoidance in human-robot interaction using kinect vision system combined with robot’s model and data. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020: 10293-10298https://doi.org/10.1109/IROS45743.2020.9341248

  8. Liu H, Qu D, Xu F et al (2022) Real-time and efficient collision avoidance planning approach for safe human-robot interaction. J Intell Robot Syst 105(4):93. https://doi.org/10.1007/s10846-022-01687-0

    Article  Google Scholar 

  9. Zhang S, Li S, Li X et al (2022) A human-robot dynamic fusion safety algorithm for collaborative operations of cobots. J Intell Robot Syst 104:1–14. https://doi.org/10.1007/s10846-021-01534-8

    Article  Google Scholar 

  10. Sangiovanni B, Rendiniello A, Incremona G P, et al (2018) Deep reinforcement learning for collision avoidance of robotic manipulators. European Control Conference (ECC). pp 2063–2068 https://doi.org/10.23919/ECC.2018.8550363

  11. M’Colo K E, Luong B, Crosnier A et al (2019) Obstacle avoidance using a capacitive skin for safe human-robot interaction. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2019: 6742-6747https://doi.org/10.1109/IROS40897.2019.8967605

  12. Escobedo C, Strong M, West M, et al (2021) Contact anticipation for physical human–robot interaction with robotic manipulators using onboard proximity sensors. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021: 7255-7262https://doi.org/10.1109/IROS51168.2021.9636130

  13. Li S, Han K, Li X et al (2021) Hybrid trajectory replanning-based dynamic obstacle avoidance for physical human-robot interaction. J Intell Robot Syst 103:1–14. https://doi.org/10.1007/s10846-021-01510-2

    Article  Google Scholar 

  14. Vigoriti F, Ruggiero F, Lippiello V et al (2018) Control of redundant robot arms with null-space compliance and singularity-free orientation representation. Robot Auton Syst 100:186–193. https://doi.org/10.1016/j.robot.2017.11.007

    Article  Google Scholar 

  15. Sadeghian H, Villani L, Keshmiri M et al (2013) Task-space control of robot manipulators with null-space compliance[J]. IEEE Trans Robot 30(2):493–506. https://doi.org/10.1109/TRO.2013.2291630

    Article  Google Scholar 

  16. Xu Q, Ge SS (2018) Adaptive control of redundant robot manipulators with null-space compliance. Assembly Autom 38(5):615–624. https://doi.org/10.1108/AA-02-2018-030

    Article  Google Scholar 

  17. Platt R, Abdallah M, Wampler C (2011) Multiple-priority impedance control. International Conference on Robotics and Automation. pp 6033–6038. https://doi.org/10.1109/ICRA.2011.5980228

  18. Hermus J, Lachner J, Verdi D et al (2021) Exploiting redundancy to facilitate physical interaction. IEEE T Robot 38(1):599–615. https://doi.org/10.1109/TRO.2021.3086632

    Article  Google Scholar 

  19. Su H, Yang C, Ferrigno G et al (2019) Improved human–robot collaborative control of redundant robot for teleoperated minimally invasive surgery. IEEE Robot Autom Let 4(2): 1447–1453 https://doi.org/10.1109/LRA.2019.2897145

  20. Ancona R (2017) Redundancy modelling and resolution for robotic mobile manipulators: a general approach. Adv Robot 31(13):706–715. https://doi.org/10.1080/01691864.2017.1326842

    Article  Google Scholar 

  21. Siciliano B, Slotine JJE (1991) A general framework for managing multiple tasks in highly redundant robotic systems. Fifth International Conference on Advanced Robotics, Pisa, Italy. pp 1211–1216. https://doi.org/10.1109/ICAR.1991.240390

  22. Khatib O, Sentis L, Park J et al (2004) Whole-body dynamic behavior and control of human-like robots. Int J Hum Robot 1(01):29–43. https://doi.org/10.1142/S0219843604000058

    Article  Google Scholar 

  23. Xiong G, Zhou Y, Yao J (2020) Null-space impedance control of 7-degree-of-freedom redundant manipulators based on the arm angles. Int J Adv Robot Syst 17(3):1–14. https://doi.org/10.1177/1729881420925297

    Article  Google Scholar 

  24. Liu N, Zhang X, Zhang L et al (2018) Study on the rigid-flexible coupling dynamics of welding robot. Wireless Pers Commun 102(2):1683–1694. https://doi.org/10.1007/s11277-017-5227-7

    Article  Google Scholar 

  25. Ibrahim O, Khalil W (2010) Inverse and direct dynamic models of hybrid robots. Mech Mach Theory 45(4):627–640. https://doi.org/10.1016/j.mechmachtheory.2009.11.007

    Article  Google Scholar 

  26. Khatib O (1987) A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J Robot Autom 3(1):43–53. https://doi.org/10.1109/JRA.1987.1087068

    Article  Google Scholar 

  27. Hogan N (1984) Impedance control: an approach to manipulation. 1984 American Control Conference, San Diego, CA, USA. pp. 304–313. https://doi.org/10.23919/ACC.1984.4788393

  28. Sadeghian H, Villani L, Keshmiri M, et al (2011) Multi-priority control in redundant robotic systems. IROS, San Francisco, pp 3752–3757. https://doi.org/10.1109/IROS.2011.6094609

  29. Su H, Yang C, Ferrigno G et al (2019) Improved human–robot collaborative control of redundant robot for teleoperated minimally invasive surgery. IEEE Robot Autom Let 4(2):1447–1453. https://doi.org/10.1109/LRA.2019.2897145

    Article  Google Scholar 

  30. Antonelli G (2009) Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE T Robot 25(5):985–994. https://doi.org/10.1109/TRO.2009.2017135

    Article  Google Scholar 

  31. Dietrich A, Wimbock T, Albu-Schaffer A et al (2012) Integration of reactive, torque-based self-collision avoidance into a task hierarchy. IEEE T Robot 28(6):1278–1293. https://doi.org/10.1109/TRO.2012.2208667

    Article  Google Scholar 

  32. Slotine S B, Siciliano B (1991) A general framework for managing multiple tasks in highly redundant robotic systems. proceeding of 5th International Conference on Advanced Robotics. pp 1211–1216.

  33. Sentis L, Khatib O (2005) Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int J Hum Robot 2(04):505–518. https://doi.org/10.1142/S0219843605000594

    Article  Google Scholar 

  34. Dietrich A, Ott C, Albu-Schäffer A (2015) An overview of null space projections for redundant, torque-controlled robots. Ind Robot 34(11):1385–1400. https://doi.org/10.1177/0278364914566516

    Article  Google Scholar 

  35. Schreiber G, Stemmer A, Bischoff R (2010) The fast research interface for the kuka lightweight robot. In: Proceedings of the IEEE workshop on innovative robot control architectures for demanding (research) applications —How to modify and enhance commercial controllers (ICRA 2010). pp: 15–21

  36. Sun Q, Guo S, Zhang L (2021) Kinematic dexterity analysis of human-robot interaction of an upper limb rehabilitation robot. Technol Health Care 29(5):1029–1045. https://doi.org/10.3233/THC-202633

    Article  PubMed  Google Scholar 

  37. Iggidr A, Kalitine B, Outbib R (1996) Semidefinite Lyapunov functions stability and stabilization. Math Control Signal 9(2):95–106. https://doi.org/10.1007/BF01211748

    Article  Google Scholar 

  38. Sepulchre R, Jankovic M, Kokotovic PV (1997) Constructive nonlinear control. Springer, London

    Book  Google Scholar 

  39. Schaft VD, Arjan (2000) L2-gain and passivity techniques in nonlinear control. Springer, London

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No.: 61973205] and National Key Research and Development Program of China [Grant No.: 2018YFC2001600].

Author information

Authors and Affiliations

Authors

Contributions

Qing Sun performed data acquisition and wrote the article manuscript and conceived the theory. Shuai Guo supervised the findings of this work at all stages. Sixian Fei discussed the results and contributed to the review of the final manuscript.

Corresponding author

Correspondence to Shuai Guo.

Ethics declarations

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Theorem 1: Suppose the mathematical model of a system is \(\dot{x}=f(x)\), \(x\in {\mathrm{R}}^{\mathrm{n}}\), and the equilibrium point of the system is \({x}_{\mathrm{e}}\). Let \(\mathrm{S}(x)\) be a \({C}^{1}\) semi-positive definite function and the derivative for time be semi-negative definite. As shown in Eq. (1A),

$$\dot{\mathrm{S}}(x)=\frac{\partial \mathrm{V}\left(x\right)}{\partial x}f(x)\le 0.$$
(1A)

Suppose \(\Omega\) be the set of maximal positive invariants contained in \(\{x\in {\mathrm{R}}^{\mathrm{n}}|\mathrm{V}(x)=0\}\). If \({x}_{\mathrm{e}}\) is conditionally asymptotically stable for \(\Omega\), so this is a stable equilibrium for \(\dot{x}=f(x)\).

Proof: This theorem was proposed by Iggidr et al. [37] The detailed proof procedure is given in the literature [38].

Theorem 2: Assume that the mathematical model of the system is

$$\left\{\begin{array}{c}\dot{x}={\mathrm{g}}_{1}(x)+{\mathrm{g}}_{2}(x)u\\ =h(x)\end{array}\right..$$
(1B)

where the state quantity \(x\in {\mathrm{R}}^{\mathrm{n}}\), the input quantity \(u\in {\mathrm{R}}^{\mathrm{m}}\) and the output quantity \(y\in {\mathrm{R}}^{\mathrm{m}}\) are strictly passive outputs of the output quantity \(y=\mathrm{h}(x)\). Further, let \(\Omega\) be the largest positive invariant set contained in \(\{x\in {\mathrm{R}}^{\mathrm{n}}|\mathrm{h}(x)=0\}\). If \({x}_{\mathrm{e}}\) is conditionally asymptotically stable for \(\Omega\), so this is a stable equilibrium for \(u=0\).

Proof: This theorem was proposed by Schaft V D and Arjan, and the detailed proof is given in the literature [39].

When the system is asymptotically stable, it needs to satisfy the condition \({\ddot{\mathbf{x}}}_{\mathrm{e}}=0\), \({\ddot{\mathbf{x}}}_{\mathrm{n},\mathrm{e}}=0\), \({\dot{\mathbf{x}}}_{\mathrm{e}}=0\), \({\dot{\mathbf{x}}}_{\mathrm{n},\mathrm{e}}=0\), \(\mathbf{x}={\mathbf{x}}_{\mathrm{e}}\) and \({\mathbf{x}}_{\mathrm{n}}={\mathbf{x}}_{\mathrm{n},\mathrm{e}}\), and there is no external contact at the point of asymptotic equilibrium stability, i.e., \({\mathbf{F}}_{\mathrm{ext},\mathrm{c}}=0\) and \({\mathbf{F}}_{\mathrm{ext},\mathrm{n}}=0\). Furthermore, let the mass matrices of the Cartesian impedance controller and the null-space impedance controller be \({{\varvec{\Lambda}}}_{\mathrm{c}}={\mathbf{M}}_{\mathrm{c}}(\mathbf{q})\) and \({{\varvec{\Lambda}}}_{\mathrm{n}}=\mathbf{N}(\mathbf{q})\mathbf{M}(\mathbf{q})\mathbf{N}{(\mathbf{q})}^{\mathrm{T}}\), respectively, and introduce \({\mathbf{C}}_{\mathrm{c}}(\mathbf{q},\dot{\mathbf{q}})\) and \({{\varvec{\mu}}}_{\mathrm{n}}={{\varvec{\Lambda}}}_{\mathrm{n}}\mathbf{N}(\mathbf{q})(\mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\mathbf{N}{(\mathbf{q})}^{\mathrm{T}}+\mathbf{M}(\mathbf{q})\dot{\mathbf{N}}{(\mathbf{q})}^{\mathrm{T}})\). In turn, the closed-loop control system Eq. (6) and Eq. (17) are transformed into Eq. (1C) and Eq. (1D).

$${{\varvec{\Lambda}}}_{\mathrm{c}}\ddot{\mathbf{x}}+({\mathbf{C}}_{\mathrm{c}}(\mathbf{q},\dot{\mathbf{q}})+{\mathbf{D}}_{\mathrm{c}})\dot{\mathbf{x}}+{\mathbf{K}}_{\mathrm{c}}(\mathbf{x}-{\mathbf{x}}_{\mathrm{e}})\text{=}{\mathbf{F}}_{\mathrm{ext},\mathrm{c}}$$
(1C)
$${{\varvec{\Lambda}}}_{\mathrm{n}}{\ddot{\mathbf{x}}}_{\mathrm{n}}+({{\varvec{\mu}}}_{\mathrm{n}}+{\mathbf{D}}_{\mathrm{n}}){\dot{\mathbf{x}}}_{\mathrm{n}}+{\mathbf{K}}_{\mathrm{n}}({\mathbf{x}}_{\mathrm{n}}-{\mathbf{x}}_{\mathrm{n},\mathrm{e}})\text{=}{\mathbf{F}}_{\mathrm{ext},\mathrm{n}}$$
(1D)

The stability analysis of the closed-loop control system formulas (1C) and (1D) is proved by Theorem 2, which leads to the construction of a semi-positive definite Lyapunov function. As shown in Eq. (1F).

$$\mathrm{V}(\mathbf{x},\dot{\mathbf{x}})=\frac{1}{2}{\dot{\mathbf{x}}}^{\mathrm{T}}{{\varvec{\Lambda}}}_{\mathrm{c}}\dot{\mathbf{x}}+\frac{1}{2}{(\mathbf{x}-{\mathbf{x}}_{\mathrm{e}})}^{\mathrm{T}}{\mathbf{K}}_{\mathrm{c}}(\mathbf{x}-{\mathbf{x}}_{\mathrm{e}})$$
(1F)

Take the time derivative of Eq. (1F), and \({\dot{\mathbf{M}}}_{\mathrm{c}}(\mathbf{q})-{\mathbf{C}}_{\mathrm{c}}(\mathbf{q},\dot{\mathbf{q}})\) is the antisymmetric matrix, and combine Eq. (1C) to obtain Eq. (1G).

$$\dot{\mathrm{V}}(\mathbf{x},\dot{\mathbf{x}})=-{\dot{\mathbf{x}}}^{\mathrm{T}}{\mathbf{C}}_{\mathrm{c}}\dot{\mathbf{x}}-{\dot{\mathbf{x}}}^{\mathrm{T}}{\mathbf{F}}_{\mathrm{ext},\mathrm{c}}$$
(1G)

It is obvious from Eq. (1C) that when \({\mathbf{F}}_{\mathrm{ext},\mathrm{c}}=0\), \(\dot{\mathrm{V}}(\mathbf{x},\dot{\mathbf{x}})\le 0\) satisfies the asymptotic equilibrium stability condition of Theorem 1. According to Theorem 2, we must prove that the system is conditionally asymptotically stable for the largest positive invariant set in \(\{(q,\dot{x},{\dot{x}}_{\mathrm{n}})\in {\mathrm{R}}^{2\mathrm{n}}|\dot{x}=0\}\). Consider further the case of free motion, i.e., \({\mathbf{F}}_{\mathrm{ext},\mathrm{c}}=0\) and \({\mathbf{F}}_{\mathrm{ext},\mathrm{n}}=0\). The maximum positive invariant set maintained by \(\dot{\mathbf{x}}=0\) can be derived from Eq. (1C) as Eq. (1H).

$$\mathrm{U}=\{(\mathbf{x},\dot{\mathbf{x}},{\dot{\mathbf{x}}}_{\mathrm{n}})|\mathbf{x}={\mathbf{x}}_{\mathrm{e}},\dot{\mathbf{x}}=0\}$$
(1H)

Furthermore, since U is a positive invariant set, all trajectories starting from U stay in U and thus the Lyapunov function is constructed as Eq. (1I).

$${\mathrm{W}}_{\mathrm{U}}({\mathbf{x}}_{\mathrm{n}},{\dot{\mathbf{x}}}_{\mathrm{n}})=\frac{1}{2}{\dot{\mathbf{x}}}_{\mathrm{n}}^{\mathrm{T}}{{\varvec{\Lambda}}}_{\mathrm{n}}{\dot{\mathbf{x}}}_{\mathrm{n}}+\frac{1}{2}{({\mathbf{x}}_{\mathrm{n}}-{\mathbf{x}}_{\mathrm{n},\mathrm{e}})}^{\mathrm{T}}{\mathbf{K}}_{\mathrm{n}}({\mathbf{x}}_{\mathrm{n}}-{\mathbf{x}}_{\mathrm{n},\mathrm{e}})$$
(1I)

The time derivative of Eq. (1I) and the combination of Eq. (1C) and Eq. (1D) yields Eq. (1J).

$${\dot{\mathrm{W}}}_{\mathrm{U}}({\mathbf{x}}_{\mathrm{n}},{\dot{\mathbf{x}}}_{\mathrm{n}})=-{\dot{\mathbf{x}}}_{\mathrm{n}}^{\mathrm{T}}{\mathbf{D}}_{\mathrm{c}}{\dot{\mathbf{x}}}_{\mathrm{n}}-{\dot{\mathbf{x}}}_{\mathrm{n}}^{\mathrm{T}}{\mathbf{F}}_{\mathrm{ext},\mathrm{n}}$$
(1J)

According to Eq. (1D), when \({\mathbf{F}}_{\mathrm{ext},\mathrm{c}}=0\), \({\dot{\mathrm{W}}}_{\mathrm{U}}({\mathbf{x}}_{\mathrm{n}},{\dot{\mathbf{x}}}_{\mathrm{n}})=-{\dot{\mathbf{x}}}_{\mathrm{n}}^{\mathrm{T}}{\mathbf{D}}_{\mathrm{c}}{\dot{\mathbf{x}}}_{\mathrm{n}}\le 0\) satisfies the asymptotic equilibrium stability condition of theorem 1. And the conditional stability of U can be obtained from \({\dot{\mathrm{W}}}_{\mathrm{U}}({\mathbf{x}}_{\mathrm{n}},{\dot{\mathbf{x}}}_{\mathrm{n}})=-{\dot{\mathbf{x}}}_{\mathrm{n}}^{\mathrm{T}}{\mathbf{D}}_{\mathrm{c}}{\dot{\mathbf{x}}}_{\mathrm{n}}\le 0\). To prove the asymptotic stability of U under the condition, we can follow LaSalle's invariance principle. It follows that all trajectories in U converge to the largest contained positive invariant set Eq. (1K).

$$\{(\mathbf{x},\dot{\mathbf{x}},{\dot{\mathbf{x}}}_{\mathrm{n}})|\mathbf{x}={\mathbf{x}}_{\mathrm{e}},\dot{\mathbf{x}}=0,{\dot{\mathbf{x}}}_{\mathrm{n}}=0\}$$
(1K)

In summary, based on the superposition of the Cartesian impedance controller and the null-space impedance controller, the whole closed-loop control system satisfies the asymptotic stability.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Guo, S. & Fei, S. Collision avoidance analysis of human–robot physical interaction based on null-space impedance control of a dynamic reference arm plane. Med Biol Eng Comput 61, 2077–2090 (2023). https://doi.org/10.1007/s11517-023-02850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02850-x

Keywords

Navigation