Skip to main content

Advertisement

Log in

Biomechanical analysis of three different types of fixators for anterior cruciate ligament reconstruction via finite element method: a patient-specific study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Complication rates of anterior cruciate ligament reconstruction (ACL-R) were reported to be around 15% although it is a common arthroscopic procedure with good outcomes. Breakage and migration of fixators are still possible even months after surgery. A fixator with optimum stability can minimise those two complications. Factors that affect the stability of a fixator are its configuration, material, and design. Thus, this paper aims to analyse the biomechanical effects of different types of fixators (cross-pin, interference screw, and cortical button) towards the stability of the knee joint after ACL-R. In this study, finite element modelling and analyses of a knee joint attached with double semitendinosus graft and fixators were carried out. Mimics and 3-Matic softwares were used in the development of the knee joint models. Meanwhile, the graft and fixators were designed by using SolidWorks software. Once the meshes of all models were finished in 3-Matic, simulation of the configurations was done using MSC Marc Mentat software. A 100-N anterior tibial load was applied onto the tibia to simulate the anterior drawer test. Based on the findings, cross-pin was found to have optimum stability in terms of stress and strain at the femoral fixation site for better treatment of ACL-R.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dargel J, Gotter M, Mader K, Pennig D, Koebke J, Schmidt-Wiethoff R (2007) Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strategies in Trauma and Limb Reconstruction 2:1–12. https://doi.org/10.1007/s11751-007-0016-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Basu B, Katti DS, Kumar A (2010) Advanced biomaterials: fundamentals, processing, and applications. Technology & Engineering. John Wiley & Sons, Hoboken, New Jersey

  3. Marieswaran M, Jain I, Garg B, Sharma V, Kalyanasundaram D (2018) A review on biomechanics of anterior cruciate ligament and materials for reconstruction. Appl Bionics Biomech 2018:4657824–4657824. https://doi.org/10.1155/2018/4657824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cinque ME, Chahla J, Moatshe G, DePhillipo NN, Kennedy NI, Godin JA, LaPrade RF (2017) Outcomes and complication rates after primary anterior cruciate ligament reconstruction are similar in younger and older patients. Orthop J Sports Med 5:2325967117729659. https://doi.org/10.1177/2325967117729659

    Article  PubMed  PubMed Central  Google Scholar 

  5. Samitier G, Marcano AI, Alentorn-Geli E, Cugat R, Farmer KW, Moser MW (2015) Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg 3:220–240

    PubMed  PubMed Central  Google Scholar 

  6. Choi N-H, Son K-M, Yoo S-Y, Victoroff BN (2011) Femoral tunnel widening after hamstring anterior cruciate ligament reconstruction with bioabsorbable transfix. Am J Sports Med 40:383–387. https://doi.org/10.1177/0363546511425883

    Article  PubMed  Google Scholar 

  7. Studler U, White LM, Naraghi AM, Tomlinson G, Kunz M, Kahn G, Marks P (2010) Anterior cruciate ligament reconstruction by using bioabsorbable femoral cross pins: MR imaging findings at follow-up and comparison with clinical findings. Radiology 255:108–116. https://doi.org/10.1148/radiol.09091119

    Article  PubMed  Google Scholar 

  8. Papastergiou SG, Koukoulias NE, Ziogas E, Dimitriadis T, Voulgaropoulos H (2009) Broken bioabsorbable femoral cross-pin as a cause of a chondral lesion after anterior cruciate ligament reconstruction. BMJ case reports. https://doi.org/10.1136/bcr.09.2008.0883

  9. Metcalfe AJ, James SH, Fairclough JA (2008) Spontaneous locking of the knee after anterior cruciate ligament reconstruction as a result of a broken tibial fixation device. Arthroscopy 24:1195–1197. https://doi.org/10.1016/j.arthro.2007.05.005

    Article  PubMed  Google Scholar 

  10. Krappel FA, Bauer E, Harland U (2006) The migration of a BioScrew as a differential diagnosis of knee pain, locking after ACL reconstruction: a report of two cases. Arch Orthop Trauma Surg 126:615–620. https://doi.org/10.1007/s00402-006-0101-1

    Article  PubMed  Google Scholar 

  11. Kurzweil PR, Frogameni AD, Jackson DW (1995) Tibial interference screw removal following anterior cruciate ligament reconstruction Arthroscopy. J Arthroscop Relate Surg 11(289):291. https://doi.org/10.1016/0749-8063(95)90004-7

    Article  Google Scholar 

  12. Teo WWT, Yeoh CSN, Wee THA (2017) Tibial fixation in anterior cruciate ligament reconstruction: is supplementary staple fixation necessary?. J Orthop Surg 25:2309499017699743. https://doi.org/10.1177/2309499017699743

    Article  Google Scholar 

  13. Huang MD, Tan HA (2012) Broken bioabsorbable tibial interference screw after anterior cruciate ligament (ACL) reconstruction using a semitendinosus-gracilis graft: a case report. Malaysian orthopaedic journal 6:42–44. https://doi.org/10.5704/moj.1207.004

    Article  PubMed  PubMed Central  Google Scholar 

  14. Resinger C, Vecsei V, Heinz T, Nau T (2005) The removal of a dislocated femoral interference screw through a posteromedial portal. Arthroscopy 21:1398. https://doi.org/10.1016/j.arthro.2005.08.035

    Article  PubMed  Google Scholar 

  15. Cossey AJ, Paterson RS (2005) Loose intra-articular body following anterior cruciate ligament reconstruction. Arthroscopy 21:348–350. https://doi.org/10.1016/j.arthro.2004.11.010

    Article  PubMed  CAS  Google Scholar 

  16. Shen HC, Chang JH, Lee CH, Shen PH, Yeh TT, Wu CC, Kuo CL (2010) Biomechanical comparison of cross-pin and Endobutton-CL femoral fixation of a flexor tendon graft for anterior cruciate ligament reconstruction–a porcine femur-graft-tibia complex study. J Surg Res 161:282–287. https://doi.org/10.1016/j.jss.2009.01.015

    Article  PubMed  Google Scholar 

  17. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion?. Am J Sports Med 34:1790–1800. https://doi.org/10.1177/0363546506290059

    Article  PubMed  Google Scholar 

  18. Hung C-C, Chen W-C, Yang C-T, Cheng C-K, Chen C-H, Lai Y-S (2014) Interference screw versus Endoscrew fixation for anterior cruciate ligament reconstruction: a biomechanical comparative study in sawbones and porcine knees. J Orthopaedic Transl 2:82–90. https://doi.org/10.1016/j.jot.2014.02.001

    Article  Google Scholar 

  19. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I. Femoral site. Am J Sports Med 31:174–181. https://doi.org/10.1177/03635465030310020401

    Article  PubMed  Google Scholar 

  20. Espejo-Baena A, Ezquerro F, Blanca APDI, Serrano-Fernandez J, Nadal F, Montañez-Heredia E (2006) Comparison of initial mechanical properties of 4 hamstring graft femoral fixation systems using nonpermanent hardware for anterior cruciate ligament reconstruction: an in vitro animal study. Arthroscopy 22:433–440. https://doi.org/10.1016/j.arthro.2005.09.021

    Article  PubMed  Google Scholar 

  21. Ezechieli M, Meyer H, Lucas A, Helmecke P, Becher C, Calliess T, Windhagen H, Ettinger M (2016) Biomechanical properties of a novel biodegradable magnesium-based interference screw. Orthopaedic Reviews (Pavia) 8:6445. https://doi.org/10.4081/or.2016.6445

    Article  Google Scholar 

  22. Yan L, Lim JL, Lee JW, Tia CSH, O’Neill GK, Chong DYR (2020) Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation. Med Biol Eng Compu. https://doi.org/10.1007/s11517-019-02104-9

    Article  Google Scholar 

  23. Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH (2004) Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and Endobutton-post fixation. Arthroscopy 20:122–128. https://doi.org/10.1016/j.arthro.2003.11.007

    Article  PubMed  Google Scholar 

  24. Zainal Abidin NA, Abdul Wahab A, Ramlee MH, Abdul Kadir M A mini review on graft fixation devices for anterior cruciate ligament reconstruction - techniques, materials and complications. In: 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Kuching, Sarawak, 2018. IEEE, pp 93–98. https://doi.org/10.1109/ICBAPS.2018.8527418

  25. Kong C-G, In Y, Kim G-H, Ahn C-Y (2012) Cross pins versus Endobutton femoral fixation in hamstring anterior cruciate ligament reconstruction: minimum 4-year follow-up. Knee Surg Relat Res 24:34–39. https://doi.org/10.5792/ksrr.2012.24.1.34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Persson A, Gifstad T, Lind M, Engebretsen L, Fjeldsgaard K, Drogset JO, Forssblad M, Espehaug B, Kjellsen AB, Fevang JM (2018) Graft fixation influences revision risk after ACL reconstruction with hamstring tendon autografts. Acta Orthop 89:204–210. https://doi.org/10.1080/17453674.2017.1406243

    Article  PubMed  Google Scholar 

  27. Zeng C, Lei G, Gao S, Luo W (2018) Methods and devices for graft fixation in anterior cruciate ligament reconstruction. Cochrane Database Syst Rev 2018:CD010730. https://doi.org/10.1002/14651858.CD010730.pub2

  28. Vaishya R, Agarwal AK, Ingole S, Vijay V (2015) Current trends in anterior cruciate ligament reconstruction: a review. Cureus 7:e378–e378. https://doi.org/10.7759/cureus.378

    Article  PubMed  PubMed Central  Google Scholar 

  29. Paulos L, Stewart A (2005) Biosteon cross pin femoral fixation and tibial interference screw fixation for hamstring anterior cruciate ligament reconstruction. Tech Orthop 20:303–305. https://doi.org/10.1097/01.bto.0000177714.95119.65

    Article  Google Scholar 

  30. Mahnik A, Mahnik S, Dimnjakovic D, Curic S, Smoljanovic T, Bojanic I (2013) Current practice variations in the management of anterior cruciate ligament injuries in Croatia. World J orthopedics 4:309–315. https://doi.org/10.5312/wjo.v4.i4.309

    Article  Google Scholar 

  31. Vaishya R, Agarwal AK, Ingole S, Vijay V (2016) Current practice variations in the management of anterior cruciate ligament injuries in Delhi. J Clin Orthop Trauma 7:193–199. https://doi.org/10.1016/j.jcot.2015.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jin J, Yu L, Wei M, Shang Y, Wang X (2019) Comparison of efficacy and safety of different fixation devices for anterior cruciate ligament reconstruction: a Bayesian network meta-analysis protocol. Medicine 98:e14911–e14911. https://doi.org/10.1097/MD.0000000000014911

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ebert JR, Annear PT (2019) ACL reconstruction using autologous hamstrings augmented with the ligament augmentation and reconstruction system provides good clinical scores, high levels of satisfaction and return to sport, and a low retear rate at 2 years. Orthop J Sports Med 7:2325967119879079. https://doi.org/10.1177/2325967119879079

    Article  PubMed  PubMed Central  Google Scholar 

  34. Singh R, Tripathy SK, Naik MA, Sujir P, Rao SK (2017) ACL reconstruction using femoral Rigid-fix and tibial Bio-intrafix devices. J Clin Orthop Trauma 8:254–258. https://doi.org/10.1016/j.jcot.2017.06.021

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mirzatolooei F (2012) Comparison of short term clinical outcomes between transtibial and transportal TransFix(R) femoral fixation in hamstring ACL reconstruction. Acta Orthop Traumatol Turc 46:361–366. https://doi.org/10.3944/aott.2012.2679

    Article  PubMed  Google Scholar 

  36. Aga C, Rasmussen M, Smith S, Jansson K, LaPrade R, Engebretsen L, Wijdicks C (2013) Biomechanical comparison of 8 soft tissue devices for tibial fixation of anterior cruciate ligament reconstruction grafts. Arthroscopy 29:e126. https://doi.org/10.1016/j.arthro.2013.07.156

    Article  Google Scholar 

  37. Monaco E, Fabbri M, Lanzetti RM, Del Duca A, Labianca L, Ferretti A (2017) Biomechanical comparison of four coupled fixation systems for ACL reconstruction with bone socket or full-tunnel on the tibial side. Knee 24:705–710. https://doi.org/10.1016/j.knee.2017.05.003

    Article  PubMed  Google Scholar 

  38. Schumacher TC, Tushtev K, Wagner U, Becker C, großeHolthaus M, Hein SB, Haack J, Heiss C, Engelhardt M, El Khassawna T, Rezwan K (2017) A novel, hydroxyapatite-based screw-like device for anterior cruciate ligament (ACL) reconstructions. Knee 24:933–939. https://doi.org/10.1016/j.knee.2017.07.005

    Article  PubMed  Google Scholar 

  39. Shen H-C, Chang J-H, Lee C-H, Shen P-H, Yeh T-T, Wu C-C, Kuo C-L (2010) Biomechanical comparison of cross-pin and Endobutton-CL femoral fixation of a flexor tendon graft for anterior cruciate ligament reconstruction—a porcine femur-graft-tibia complex study. J Surg Res 161:282–287. https://doi.org/10.1016/j.jss.2009.01.015

    Article  PubMed  Google Scholar 

  40. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227. https://doi.org/10.1177/0363546506294571

    Article  PubMed  Google Scholar 

  41. Wan C, Hao Z, Li Z, Lin J (2017) Finite element simulations of different hamstring tendon graft lengths and related fixations in anterior cruciate ligament reconstruction. Medical & biological engineering & computing 55. https://doi.org/10.1007/s11517-017-1637-7

  42. Robert W, Westermann BRW, Elkins JM (2013) Effect of ACL reconstruction graft size on simulated Lachman testing: a finite element analysis. Iowa Orthop J 33:70–77

    Google Scholar 

  43. Wan C, Hao Z, Wen S (2011) The finite element analysis of three grafts in the anterior cruciate ligament reconstruction. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), 15–17 Oct. 2011 2011. pp 1338–1342. https://doi.org/10.1109/BMEI.2011.6098519

  44. Ramlee MH, Sulong MA, Garcia-Nieto E, Penaranda DA, Felip AR, Kadir MRA (2018) Biomechanical features of six design of the delta external fixator for treating Pilon fracture: a finite element study. Med Biol Eng Comput 56:1925–1938. https://doi.org/10.1007/s11517-018-1830-3

    Article  PubMed  Google Scholar 

  45. Harrysson OLA, Hosni YA, Nayfeh JF (2007) Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord 8:91. https://doi.org/10.1186/1471-2474-8-91

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ren D, Liu Y, Zhang X, Song Z, Lu J, Wang P (2017) The evaluation of the role of medial collateral ligament maintaining knee stability by a finite element analysis. J Orthop Surg Res 12:64. https://doi.org/10.1186/s13018-017-0566-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Faisal A, Ng SC, Goh SL, Lai KW (2018) Knee cartilage segmentation and thickness computation from ultrasound images. Med Biol Eng Compu 56:657–669. https://doi.org/10.1007/s11517-017-1710-2

    Article  Google Scholar 

  48. Wolf EM, Whelan J (2017) Bio-Transfix ACL reconstruction. Surgical Technique. Arthrex Inc., United State

    Google Scholar 

  49. Synthes D (2015) Milagro advance interference screw. Anteromedial ACL Reconstruction for bone-tendon-bone grafts. Johnson & Johnson Medical Limited, United Kingdom

  50. Nephew S (2012) ENDOBUTTONTM family of fixation devices. Knee Arthroscopy. Smith & Nephew Inc, USA

    Google Scholar 

  51. Sun J, Yan S, Jiang Y, Wong DW, Zhang M, Zeng J, Zhang K (2016) Finite element analysis of the valgus knee joint of an obese child. Biomed Eng Online 15:158. https://doi.org/10.1186/s12938-016-0253-3

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shu L, Yamamoto K, Yao J, Saraswat P, Liu Y, Mitsuishi M, Sugita N (2018) A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement. J Biomech 77:146–154. https://doi.org/10.1016/j.jbiomech.2018.07.008

    Article  PubMed  Google Scholar 

  53. Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43:2164–2173. https://doi.org/10.1016/j.jbiomech.2010.03.046

    Article  PubMed  CAS  Google Scholar 

  54. Pianigiani S, Croce D, D’Aiuto M, Pascale W, Innocenti B (2018) Sensitivity analysis of the material properties of different soft-tissues: implications for a subject-specific knee arthroplasty. Muscles Ligaments Tendons J 7:546–557. https://doi.org/10.11138/mltj/2017.7.4.546

  55. Ramaniraka NA, Saunier P, Siegrist O, Pioletti DP (2007) Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. Clin Biomech 22:336–343. https://doi.org/10.1016/j.clinbiomech.2006.10.006

    Article  CAS  Google Scholar 

  56. Wan C, Hao Z, Li Z, Lin J (2017) Finite element simulations of different hamstring tendon graft lengths and related fixations in anterior cruciate ligament reconstruction. Med Biol Eng Compu 55:2097–2106. https://doi.org/10.1007/s11517-017-1637-7

    Article  Google Scholar 

  57. Bahraminasab M, Jahan A, Sahari B, Arumugam M, Shamsborhan M, Hassan MR (2013) Using design of experiments methods for assessing peak contact pressure to material properties of soft tissue in human knee. J Med Eng 2013:891759. https://doi.org/10.1155/2013/891759

    Article  PubMed  PubMed Central  Google Scholar 

  58. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2004) The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J Orthop Res 22:807–814. https://doi.org/10.1016/j.orthres.2003.12.010

    Article  PubMed  Google Scholar 

  59. Shalom H, Sui X, Elianov O, Brumfeld V, Rosentsveig R, Pinkas I, Feldman Y, Kampf N, Wagner HD, Lachman N, Tenne R (2019) Nanocomposite of poly(l-lactic acid) with inorganic nanotubes of WS2. Lubricants 7. https://doi.org/10.3390/lubricants7030028

  60. Dutta PK (2016) Chitin and chitosan for regenerative medicine. Springer Series on Polymer and Composite Materials, 1 edn. Springer India. India. https://doi.org/10.1007/978-81-322-2511-9

    Article  Google Scholar 

  61. Niinomi M, Nakai M (2011) Titanium-based biomaterials for preventing stress shielding between implant devices and bone. International Journal of Biomaterials 2011:836587. https://doi.org/10.1155/2011/836587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Fangueiro R, Pereira CG, De AraÚJo M (2008) 18 - Applications of polyesters and polyamides in civil engineering. In: Deopura BL, Alagirusamy R, Joshi M, Gupta B (eds) Polyesters and polyamides. Woodhead Publishing, pp 542–592. https://doi.org/10.1533/9781845694609.3.542

  63. Germain F, Rohan PY, Rochcongar G, Rouch P, Thoreux P, Pillet H, Skalli W Role of ligaments in the knee joint kinematic behavior: development and validation of a finite element model. In: Joldes GR, Doyle B, Wittek A, Nielsen PMF, Miller K (eds) Computational biomechanics for medicine, 2016// 2016. Springer International Publishing, pp 15–26. https://doi.org/10.1007/978-3-319-28329-6_2

  64. Duraisamy S, Yamako G, Chosa E, Subburaj K (2019) Biomechanical evaluation of isotropic and shell-core composite meniscal implants for total meniscus replacement: a nonlinear finite element study. IEEE Access 7:140084–140101. https://doi.org/10.1109/ACCESS.2019.2943689

    Article  Google Scholar 

  65. Shacham S, Castel D, Gefen A (2010) Measurements of the static friction coefficient between bone and muscle tissues. J Biomech Eng 132:084502. https://doi.org/10.1115/1.4001893

    Article  PubMed  Google Scholar 

  66. Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9:113–119. https://doi.org/10.1002/jor.1100090114

    Article  PubMed  CAS  Google Scholar 

  67. Song Y, Debski RE, Musahl V, Thomas M, Woo SL (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37:383–390. https://doi.org/10.1016/s0021-9290(03)00261-6

    Article  PubMed  Google Scholar 

  68. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89. https://doi.org/10.1016/s0736-0266(03)00133-5

    Article  PubMed  Google Scholar 

  69. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666. https://doi.org/10.1177/03635465020300050501

    Article  PubMed  Google Scholar 

  70. Fu FH, Bennett CH, Lattermann C, Ma CB (1999) Current trends in anterior cruciate ligament reconstruction. Part 1. Biology and biomechanics of reconstruction. Am J Sports Med 27:821–830. https://doi.org/10.1177/03635465990270062501

    Article  PubMed  CAS  Google Scholar 

  71. van der Esch M, Steultjens M, Harlaar J, Wolterbeek N, Knol DL, Dekker J (2008) Knee varus–valgus motion during gait – a measure of joint stability in patients with osteoarthritis?. Osteoarthritis Cartilage 16:522–525. https://doi.org/10.1016/j.joca.2007.08.008

    Article  PubMed  Google Scholar 

  72. Rajyalakshmi R, Prakash WD, Ali MJ, Naik MN (2017) Periorbital biometric measurements using ImageJ software: standardisation of technique and assessment of intra- and interobserver variability. J Cutan Aesthet Surg 10:130–135. https://doi.org/10.4103/JCAS.JCAS_61_17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Boulan B, Beghin A, Ravanello C, Deloulme J-C, Gory-Fauré S, Andrieux A, Brocard J, Denarier E (2020) AutoNeuriteJ: an ImageJ plugin for measurement and classification of neuritic extensions. PLoS ONE 15:e0234529. https://doi.org/10.1371/journal.pone.0234529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Aragón-Sánchez J, Quintana-Marrero Y, Aragón-Hernández C, Hernández-Herero MJ (2017) ImageJ: a free, easy, and reliable method to measure leg ulcers using digital pictures. Int J Low Extrem Wounds 16:269–273. https://doi.org/10.1177/1534734617744951

    Article  PubMed  Google Scholar 

  75. Noh J, Lee J (2017) One-year serial follow-up magnetic resonance imaging study of RigidFix for femoral fixation in anterior cruciate ligament reconstruction. Knee Surgery & Related Research 29:209–215. https://doi.org/10.5792/ksrr.16.073

    Article  Google Scholar 

  76. Wang Y, Fan Y, Zhang M (2014) Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med Eng Phys 36:439–447. https://doi.org/10.1016/j.medengphy.2014.01.004

    Article  PubMed  Google Scholar 

  77. Zainal Abidin NA, Abdul Kadir M, Ramlee MH (2019) Three dimensional finite element modelling and analysis of human knee joint-model verification. J Phys: Conf Ser 1372:012068. https://doi.org/10.1088/1742-6596/1372/1/012068

    Article  Google Scholar 

  78. Fogel H, Golz A, Burleson A, Muriuki M, Havey R, Carandang G, Patwardhan A, Tonino P (2019) A biomechanical analysis of tibial fixation methods in hamstring-graft anterior cruciate ligament reconstruction. Iowa Orthop J 39:141–147

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Ramlee MH, Abdul Kadir MR, Murali MR, Kamarul T (2014) Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation—a finite element analysis. Med Eng Phys 36:1358–1366. https://doi.org/10.1016/j.medengphy.2014.07.001

    Article  PubMed  Google Scholar 

  80. Kim J-T, Jung C-H, Shen QH, Cha Y-H, Park CH, Yoo J-I, Song HK, Jeon Y, Won Y-Y (2019) Mechanical effect of different implant caput-collum-diaphyseal angles on the fracture surface after fixation of an unstable intertrochanteric fracture: a finite element analysis. Asian J Surg 42:947–956. https://doi.org/10.1016/j.asjsur.2019.01.008

    Article  PubMed  Google Scholar 

  81. Peña E, Martínez MA, Calvo B, Palanca D, Doblaré M (2005) A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clin Biomech (Bristol, Avon) 20:636–644. https://doi.org/10.1016/j.clinbiomech.2004.07.014

    Article  Google Scholar 

  82. Kolluru PV, Lipner J, Liu W, Xia Y, Thomopoulos S, Genin GM, Chasiotis I (2013) Strong and tough mineralized PLGA nanofibers for tendon-to-bone scaffolds. Acta Biomater 9:9442–9450. https://doi.org/10.1016/j.actbio.2013.07.042

    Article  PubMed  CAS  Google Scholar 

  83. Longzhen Wang JT, Pengfei Dong, David L. Wilson, Hiram G. Bezerra, Linxia Gu Mechanical performance of PLLA Stent. In: 2018 Design of Medical Devices Conference, Minneapolis, MN, USA, 2018. p 7. https://doi.org/10.1115/DMD2018-6957

  84. Gorsse SMD (2003) Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcement. Acta Mater 51:2427–2442

    Article  CAS  Google Scholar 

  85. A. EW. A. Hadi MRAK, M. N. Harun, A. Syahrom The influence of PEG designs on glenoid component: a finite element study. In: Malaysian INternational Tribology Conference, 2015. Malaysian Tribology Society, pp 52–53

  86. Brandon P, Lucke-Wold PCB, Jacob G (2017) Re-fracture of distal radius and hardware repair in the setting of trauma. Medical Student Research Journal 5:2–7

    Google Scholar 

  87. Garg AK (2009) Implant dentistry - E-Book. Elsevier Health Sciences,

  88. Askeland DR, Fulay PP, Wright WJ (2011) The science and engineering of materials, SI edition. Cengage Learning,

  89. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy: The Journal of Arthroscopic & Related Surgery 22:660–668. https://doi.org/10.1016/j.arthro.2006.04.082

    Article  Google Scholar 

  90. Frost HM (2001) The anatomical record: an official publication of the American Association of Anatomists. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications, vol 4. Wiley Online Library. https://doi.org/10.1002/ar.1049.

  91. Turner CH, Wang T, Burr DB (2001) Shear strength and fatigue properties of human cortical bone determined from pure shear tests. Calcif Tissue Int 69:373–378. https://doi.org/10.1007/s00223-001-1006-1

    Article  PubMed  CAS  Google Scholar 

  92. Zhang X, Gong HE (2015) Simulation on tissue differentiations for different architecture designs in bone tissue engineering scaffold based on cellular structure model. Journal of Mechanics in Medicine and Biology 15:1550028. https://doi.org/10.1142/S0219519415500281

    Article  Google Scholar 

  93. Finn E, Donaldson PP, Hamish A, Simpson RW (2012) Bone properties affect loosening of half-pin external fixators at the pin-bone interface. Injury, Int J Care Injured 43:1764–1770

    Article  Google Scholar 

  94. Danieli MV, Padovani CR (2011) Comparison of interference screw and transcondilar in the ACL reconstruction. Acta Ortopédica Brasileira 19:338–341. https://doi.org/10.1590/S1413-78522011000600003

    Article  Google Scholar 

  95. Rodríguez C, Maestro A, García TE, Montes S (2011) Static load biomechanical behaviour of different femoral fixation systems for anterior cruciate ligament reconstruction. Revista Española de Cirugía Ortopédica y Traumatología (English Edition) 55:428–436. https://doi.org/10.1016/j.recote.2011.07.001

    Article  Google Scholar 

  96. Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN (2004) Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med 32:635–640. https://doi.org/10.1177/0363546503261714

    Article  PubMed  Google Scholar 

  97. Chen C-H, Hung C, Hsu Y-C, Chen C-S, Chiang C-C (2017) Biomechanical evaluation of reconstruction plates with locking, nonlocking, and hybrid screws configurations in calcaneal fracture: a finite element model study. Med Biol Eng Compu 55:1799–1807. https://doi.org/10.1007/s11517-017-1623-0

    Article  Google Scholar 

  98. Shriram D, Praveen Kumar G, Cui F, Lee YHD, Subburaj K (2017) Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep 7:6011. https://doi.org/10.1038/s41598-017-06271-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Zainal Abidin NA, Abdul Kadir MR, Ramlee MH (2020) Biomechanical effects of different lengths of cross-pins in anterior cruciate ligament reconstruction: a finite element analysis. J Mechanics Medicine Biol 20:2050047. https://doi.org/10.1142/S0219519420500475

Download references

Acknowledgements

The authors would like to thank the Medical Devices and Technology Centre, School of Biomedical Engineering and Health Sciences, and Universiti Teknologi Malaysia for research facilities.

Funding

This research is supported by the Ministry of Higher Education Malaysia (MOHE) under Fundamental Research Grant Scheme (grant no.: R.J130000.7851.5F135 and FRGS/1/2019/TK05/UTM/02/3), Zamalah UTM Scholarship, and was conducted in collaboration with the Research Management Centre (RMC), Universiti Teknologi Malaysia (UTM) under Research University Grant Tier 2 (grant no.: R.J130000.2651.15J84) and Matching Grant (grant no.: Q.J130000.3051.02M69 and R.J130000.7351.4B618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hanif Ramlee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainal Abidin, N.A., Abdul Wahab, A.H., Abdul Rahim, R.A. et al. Biomechanical analysis of three different types of fixators for anterior cruciate ligament reconstruction via finite element method: a patient-specific study. Med Biol Eng Comput 59, 1945–1960 (2021). https://doi.org/10.1007/s11517-021-02419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02419-6

Keywords

Navigation