Skip to main content

Advertisement

Log in

Quantifying muscle alterations in a Parkinson’s disease animal model using electromyographic biomarkers

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease currently diagnosed based on characteristic motor dysfunctions. The most common Parkinson’s disease animal model induces massive nigrostriatal degeneration by intracerebral infusion of 6-hydroxydopamine (6-OHDA). Motor deficits in rat models of Parkinson’s disease were previously addressed in other works. However, an accurate quantification of muscle function in freely moving PD-lesioned rats over time has not been described until now. In this work, we address the muscular activity characterization of a 6-OHDA-lesion model of PD along 6 weeks post-lesion based on spectral and morphological analysis of the signals. Using chronic implanted EMG electrodes in a hindlimb muscle of freely moving rats, we have evaluated the effect of the PD neurotoxic model in the muscular activity during locomotion. EMG signals obtained from animals with different time post-injury were analyzed. Power spectral densities were characterized by the mean and median frequency, and the EMG burst stationarity was previously verified for all animals. Our results show that as the time post-lesion increases both frequency parameters decrease. Probability distribution function analysis was also performed. The results suggest that contractile dynamics of the biceps femoris muscle change with time post-lesion. We have also demonstrated here the usefulness of frequency parameters as biomarkers for monitoring the muscular function changes that could be used for early detection of motor dysfunction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Albarracín AL, Farfán FD, Coletti MA, Teruya PY, Felice CJ (2016) Electrophysiology for biomedical engineering students: a practical and theoretical course in animal electrocorticography. Adv Physiol Educ 40:402–409

    Article  PubMed  Google Scholar 

  2. Ariano MA, Armstrong RB, Edgerton VR (1973) Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem 21:51–55

    Article  PubMed  CAS  Google Scholar 

  3. Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25:525–531

    Article  PubMed  CAS  Google Scholar 

  4. Bendat JS, Piersol AG. (2010) Random data: analysis and measurement procedures. 4. John Wiley & Sons; New York.

  5. Bilodeau M, Cincera M, Arsenault AB, Gravel D (1997) Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions. J Electromyogr Kinesiol 7:87–96

    Article  PubMed  CAS  Google Scholar 

  6. Blesa J, Trigo-Damas I, Dileone M, Lopez-Gonzalez del Rey N, Hernandez LF, Obeso J (2017) Compensatory mechanisms in Parkinson’s disease: circuits adaptations and role in disease modification. Exp Neurol 298:148–161

    Article  PubMed  CAS  Google Scholar 

  7. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  8. Campos FL, Carvalho MM, Cristovão AC, Je G, Baltazar G, Salgado AJ, Kim YS, Sousa N (2013) Rodent models of Parkinson’s disease: beyond the motors symptomatology. Front in Behav Neurosc 7:175

    Article  CAS  Google Scholar 

  9. Carman LS, Gage FH, Shults CW (1991) Partial lesion of the substantia nigra: relation between extent of lesion and rotational behavior. Brain Res 553:275–283

    Article  PubMed  CAS  Google Scholar 

  10. Chaniary K, Baron M, Rice A, Wetzel P, Shapiro S (2008) Electromyographic characterization in an animal model of dystonia. Mov Disord 23(8):1122–1129

    Article  PubMed  Google Scholar 

  11. Clancy EA, Hogan N (1999) Probability density of the surface electromyogram and its relation to amplitude detectors. IEEE Trans Biomed Eng 46(6):730–739

    Article  PubMed  CAS  Google Scholar 

  12. Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317

    Article  PubMed  CAS  Google Scholar 

  13. Di Sciascio F, López NM and Valentinuzzi M (2008) Detección del Comienzo de la Contracción Muscular en Base al Contenido de Información del EMG. ANDESCON 2008, Cuzco, Perú.

  14. Di Fabio RP (1987) Reliability of computerised surface electromyography for determining the onset of muscle activity. Phys Ther 67:43–48

    Article  PubMed  Google Scholar 

  15. Double KL (1993) Crocker AD (1993) Quantitative electromyographic changes following modification of central dopaminergic transmission. Brain Res 604(1–2):342–344

    Article  PubMed  CAS  Google Scholar 

  16. Duchene J, Goubel F (1993) Surface electromyogram during voluntary contraction: processing tools and relation to physiological events. Crit Rev Biomed Eng 21:313–397

    PubMed  CAS  Google Scholar 

  17. Frank S, Schmidt WJ (2003) Burst activity of spiny projection neurons in the striatum encodes superimposed muscle tetani in cataleptic rats. Exp Brain Res 152:519–522

    Article  PubMed  Google Scholar 

  18. Gillis GB, Biewener AA (2001) Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). J Experim Biol 204:2717–2731

    Article  CAS  Google Scholar 

  19. Gorassini M, Eken T, Bennett DJ, Kiehn O, Hultborn H (2000) Activity of hindlimb motor units during locomotion in the conscious rat. J Neurophysiol 83(4):2002–2011

    Article  PubMed  CAS  Google Scholar 

  20. Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30:357–364

    Article  PubMed  CAS  Google Scholar 

  21. Hennig R, Lømo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166

    Article  PubMed  CAS  Google Scholar 

  22. Hsieh TH, Chen JJ, Chen LH, Chiang PT, Lee HY (2011) Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behav Brain Res 222:1–9

    Article  PubMed  Google Scholar 

  23. Hudson JL, van Horne CG, Stromberg I, Brock S, Clayton J, Masserano J, Hoffer BJ, Gerhardt GA (1993) Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 626:167–174

    Article  PubMed  CAS  Google Scholar 

  24. Iancu R, Mohapel P, Brundin P, Paul G (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 162:1–10

    Article  PubMed  CAS  Google Scholar 

  25. Jagmag SA, Tripathi N, Shukla S, Maiti S, Khurana S (2015) Evaluation of models of Parkinson’s disease. Rev Front Neurosc. https://doi.org/10.3389/fnins.2015.00503

    Article  Google Scholar 

  26. Javoy F, Sotelo C, Herbet A, Agid Y (1976) Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res 102:201–215

    Article  PubMed  CAS  Google Scholar 

  27. Jeon BS, Jackson-Lewis V, Burke RE (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4:131–137

    Article  PubMed  CAS  Google Scholar 

  28. Kong FJ, Berger AJ (1986) Firing properties and hypercapnic responses of single phrenic motor axons in the rat. J Appl Physiol 61:1999–2004

    Article  PubMed  CAS  Google Scholar 

  29. Kordys E, Apetz N, Schneider K, Duncan E, Büschbell B, Rohleder C, Sué M, Drzezga A, Neumaier B, Timmermann L, Endepols H (2017) Motor impairment and compensation in a hemiparkinsonian rat model: correlation between dopamine depletion severity, cerebral metabolism and gait patterns. EJNMMI Res 7:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lorenc-Koci E, Wolfarth S, Ossowska K (1996) Haloperidol-increased muscle tone in rats as a model of parkinsonian rigidity. Exp Brain Res 109:268–276

    Article  PubMed  CAS  Google Scholar 

  31. Mananas MA, Fiz JA, Morera J, Caminal P (2001) Analyzing dynamic EMG and VMG signals of respiratory muscles. IEEE Eng Med Biol Mag 20:125–132

    Article  PubMed  CAS  Google Scholar 

  32. Meigal AY, Rissanen SM, Tarvainen MP, Airaksinen O, Kankaanpää M, Karjalainen PA (2013) Non-linear EMG parameters for differential and early diagnostics of Parkinson’s disease. Front Neurol 17(4):135

    Google Scholar 

  33. Metz GA, Tse A, Ballermann M, Smith LK, Fouad K (2005) The unilateral 6-OHDA rat model of Parkinson’s disease revisited: an electromyographic and behavioural analysis. Eur J Neurosci 22:735–744

    Article  PubMed  Google Scholar 

  34. Miklyaeva E, Martens D, Whishaw IQ (1995) Impairments and compensatory adjustments in spontaneous movement after unilateral dopamine depletion in rats. Brain Res 681(1–2):23–40

    Article  PubMed  CAS  Google Scholar 

  35. Moritani T, Muro M (1987) Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur J Appl Physiol 56:260–265

    Article  CAS  Google Scholar 

  36. Muir G, Whishaw I (1999) Ground reaction forces in locomoting hemi-parkinsonian rats: a definitive test for impairments and compensations. Exp Brain Res 126:307–314

    Article  PubMed  CAS  Google Scholar 

  37. Nakamura S, Kawai N, Ohnuki Y, Saeki Y, Korfage JAM, Langenbach GEJ, Kitayama T, Watanabe M, Sano R, Tanne K, Tanaka E (2013) Changes in activity and structure of jaw muscles in Parkinson’s disease model rats. J Oral Rehab 40:205–213

    Article  CAS  Google Scholar 

  38. Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  PubMed  CAS  Google Scholar 

  39. Papoulis A (1984) Probability, random variables, and stochastic processes. McGraw-Hill, New York

    Google Scholar 

  40. Paxinos G. and Watson C (2006) The rat brain in stereotaxic coordinates, 6th ed.

  41. Peng Q, Zhong S, Tan Y, Zeng W, Wang J, Cheng C, Yang X, Wu Y, Cao X, Xu Y (2019) The rodent models of dyskinesia and their behavioral assessment. Front Neurol 11(10):1016

    Article  Google Scholar 

  42. Rissanen SM, Kankaanpää M, Meigal A et al (2008) Surface EMG and acceleration signals in Parkinson’s disease: feature extraction and cluster analysis. Med Biol Eng Comput 46:849–858

    Article  PubMed  Google Scholar 

  43. Rissanen SM et al (2009) Analysis of dynamic voluntary muscle contractions in Parkinson’s disease. IEEE Trans Biomed Eng 56(9):2280–2288

    Article  PubMed  Google Scholar 

  44. Roghani M, Behzadi G, Baluchnejadmojarad T (2002) Efficacy of elevated body swing test in the early model of Parkinson’s disease in rat. Physiol Behav 76:507–510

    Article  PubMed  CAS  Google Scholar 

  45. Schallert T, Norton D, Jones TA (1992) A clinically relevant unilateral rat model of Parkinsonian akinesia. J Neurol Trans Plasticity 3:332–333

    Article  Google Scholar 

  46. Scholle HCh, Schumann NP, Biedermann F, Stegeman DF, Graßme R, Roeleveld K, Schilling N, Fischer MS (2001) Spatiotemporal surface EMG characteristics from rat triceps brachii muscle during treadmill locomotion indicate selective recruitment of functionally distinct muscle regions. Exp Brain Res 138:26–36

    Article  PubMed  CAS  Google Scholar 

  47. Scholle Hans C, Jinnah HA, Arnold Dirk, Frank HW, Biedermann Bernd Faenger, Grassme Roland, Hess Ellen J, Schumann Nikolaus P (2010) Kinematic and electromyographic tools for characterizing movement disorders in mice. Mov Disord 25(3):265–274

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schultz W (1982) Depletion of dopamine in the striatum as an experimental model of Parkinsonism: direct effects and adaptive mechanisms. Prog Neurobiol 18:121–166

    Article  PubMed  CAS  Google Scholar 

  49. Schumann NP, Biedermann FHW, Arnold D, Jinnah HA, Grassme R, Fischer MS, Scholle HC (2006) Treadmill locomotion in normal mice—step related multi-channel EMG profiles of thigh muscles. Pathophysiology 13:245–255

    Article  PubMed  Google Scholar 

  50. Schwarting RK, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50:275–331

    Article  PubMed  CAS  Google Scholar 

  51. Seven YB, Mantilla CB, Zhan WZ, Sieck GC (2013) Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle. Respir Physiol Neurobiol 185(2):400–409

    Article  PubMed  Google Scholar 

  52. Shi LH, Luo F, Woodward DJ, Chang JY (2004) Neural responses in multiple basal ganglia regions during spontaneous and treadmill locomotion tasks in rats. Exp Brain Res 157:303–314

    Article  PubMed  CAS  Google Scholar 

  53. Siegel S, Castellan J (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill

    Google Scholar 

  54. Silverman PB, Ho BT (1981) Persistent behavioural effect in apomorphine in 6-hydroxydopamine-lesioned rats. Nature 294:475–477

    Article  PubMed  CAS  Google Scholar 

  55. Silvestrin RB, Fürstenau de Oliveira L, Batassini C, Oliveirac A, Mello e Souza T (2009) The footfault test as a screening tool in the 6-hydroxydopamine rat model of Parkinson’s disease. J Neurosci Methods 177:317–321

    Article  PubMed  CAS  Google Scholar 

  56. Solomonow M, Baten C, Smit J, Baratta R, Hermens H, Dambrosia R et al (1990) Electromyogram power spectra frequencies associated with motor unit recruitment strategies. J Appl Physiol 68:1177–1185

    Article  PubMed  CAS  Google Scholar 

  57. Stoker TB, Torsney KM, Barker RA (2018) Emerging treatment approaches for Parkinson’s disease. Front Neurosci 12:693

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sullivan RM, Fraser A, Szechtman H (1994) Asymmetrical orientation to edges of an openfield: modulation by striatal dopamine and relationship to motor asymmetries in the rat. Brain Res 637:114–118

    Article  PubMed  CAS  Google Scholar 

  59. Tkach D, Huang H, Kuiken TA (2010) Study of stability of time-domain features for electromyographic pattern recognition. J Neuroeng Rehabiliation 7:1–13

    Google Scholar 

  60. Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81:369–382

    Article  PubMed  Google Scholar 

  61. Tysseling VM, Janes L, Imhoff R, Quinlan KA, Lookabaugh B, Ramalingam S, Heckman CJ, Tresch MC (2013) Design and evaluation of a chronic EMG multichannel detection system for long-term recordings of hindlimb muscles in behaving mice. J Electromyogr Kinesiol 23(3):531–539

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24(3):485–493

    Article  PubMed  CAS  Google Scholar 

  63. von Tscharner V, Nigg BM (2008) Point: counterpoint: spectral properties of the surface EMG can characterize/do not provide information about motor unit recruitment strategies and muscle fiber type. J Appl Physiol 105:5

    Google Scholar 

  64. Wolfarth S, Konieczny J, Smiałowska M, Schulze G, Ossowska K (1996) Influence of 6-hydroxydopamine lesion of the dopaminergic nigrostriatal pathway on the muscle tone and electromyographic activity measured during passive movements. Neuroscience 74(4):985–996

    Article  PubMed  CAS  Google Scholar 

  65. Yaar I, Niles L (1992) Muscle fiber conduction velocity and mean power spectrum frequency in neuromuscular disorders and in fatigue. Muscle Nerve 15(7):780–787

    Article  PubMed  CAS  Google Scholar 

  66. Yuan H, Sarre S, Ebinger G, Michotte Y (2005) Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson’s disease. J Neurosci Methods 144:35–45

    Article  PubMed  Google Scholar 

  67. Ziegler M, Szechtman H (1988) Differences in the behavioral profile of circling under amphetamine and apomorphine in rats with unilateral lesions of the substantia nigra. Behav Neurosci 102(2):276–288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT), and Institutional fundings from Instituto Superior de Investigaciones Biológicas (INSIBIO).

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed by Teruya PY, Pizá AG, and Albarracin AL. Collection and pre-processing of the data: Pizá AG, Lucianna FA, and Soletta JH. Data processing, figures, tables, and statistics: Farfán FD. First draft of the manuscript: Albarracin AL and Farfán FD. Final manuscript, editing, and review: Albarracin AL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana L. Albarracín.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Pablo Y. Teruya and Fernando D. Farfán Equal contribution

Highlights

• Motor function evaluation is crucial for Parkinson’s disease treatments development

• Muscle alterations of freely moving 6-OHDA-lesioned rats have been quantified

• EMG signals spectral contents progressively changes with the time post-lesion

• Spectral frequencies parameters are suitable and competent estimators of muscle function

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teruya, P.Y., Farfán, F.D., Pizá, Á.G. et al. Quantifying muscle alterations in a Parkinson’s disease animal model using electromyographic biomarkers. Med Biol Eng Comput 59, 1735–1749 (2021). https://doi.org/10.1007/s11517-021-02400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02400-3

Keywords

Navigation