Skip to main content
Log in

Multiple functional connectivity networks fusion for schizophrenia diagnosis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Accurate diagnosis of schizophrenia is of great importance to patients and clinicians. Recent studies have found that different frequency bands contain complementary information for diagnosis and prognosis. However, conventional multiple frequency functional connectivity (FC) networks using Pearson’s correlation coefficient (PCC) are usually based on pairwise correlations among different brain regions on single frequency band, while ignoring the interactions between regions in different frequency bands, the relationship among different networks, and the nonlinear properties of blood-oxygen-level-dependent (BOLD) signal. To take into account these relationships, we propose in this study a multiple networks fusion method for schizophrenia diagnosis. Specifically, we first construct FC networks within the same and across frequency from the resting-state functional magnetic resonance imaging (rs-fMRI) time series by using extended maximal information coefficient (eMIC) based on four frequency bands: slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–0.198 Hz), and slow-2 (0.198–0.25 Hz). Then, these networks are combined nonlinearly through network fusion, which generates a unified network for each subject. Features extracted from the unified network are used for final classification. Experimental results demonstrated that the interaction between distinct brain regions across different frequency bands can significantly improve the classification performance, comparing with conventional FC analysis based on specific or entire low-frequency band. The promising results suggest that our proposed framework would be a useful tool in computer-aided diagnosis of schizophrenia.

The flowchart of proposed classification framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Du Y, Pearlson GD, Liu J, Sui J, Yu Q et al (2015) A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. NeuroImage 122:272–280

    PubMed  PubMed Central  Google Scholar 

  2. Saha S, Chant D, Welham J, McGrath J (2005) A systematic review of the prevalence of schizophrenia. PLoS Med 2:e141

    PubMed  PubMed Central  Google Scholar 

  3. Knapp M, Mangalore R, Simon J (2004) The global costs of schizophrenia. Schizophr Bull 30:279–293

    PubMed  Google Scholar 

  4. Mathers C, Fat DM, Boerma JT (2008) The global burden of disease: 2004 update: World Health Organization

  5. Nieuwenhuis M, van Haren NE, Pol HEH, Cahn W, Kahn RS et al (2012) Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 61:606–612

    PubMed  Google Scholar 

  6. Shim M, Hwang H-J, Kim D-W, Lee S-H, Im C-H (2016) Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features. Schizophr Res 176:314–319

    PubMed  Google Scholar 

  7. Shakil S, Lee C-H, Keilholz SD (2016) Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. NeuroImage 133:111–128

    PubMed  PubMed Central  Google Scholar 

  8. Konrad K, Eickhoff SB (2010) Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp 31:904–916

    PubMed  PubMed Central  Google Scholar 

  9. Lynall M-E, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M et al (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hulvershorn LA, Cullen K, Anand A (2011) Toward dysfunctional connectivity: a review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging Behav 5:307–328

    PubMed  PubMed Central  Google Scholar 

  11. Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-Taylor J, Mourao-Miranda J (2015) Sparse network-based models for patient classification using fMRI. Neuroimage 105:493–506

    PubMed  PubMed Central  Google Scholar 

  12. Shen H, Wang L, Liu Y, Hu D (2010) Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage 49:3110–3121

    PubMed  Google Scholar 

  13. Arbabshirani MR, Kiehl K, Pearlson G, Calhoun VD (2013) Classification of schizophrenia patients based on resting-state functional network connectivity. Front Neurosci 7:133

    PubMed  PubMed Central  Google Scholar 

  14. Rashid B, Arbabshirani MR, Damaraju E, Cetin MS, Miller R, Pearlson GD, Calhoun VD (2016) Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage 134:645–657

    PubMed  PubMed Central  Google Scholar 

  15. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    PubMed  Google Scholar 

  16. Penttonen M, Buzsáki G (2003) Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst 2:145–152

    Google Scholar 

  17. Wee C-Y, Yap P-T, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012) Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PLoS One 7:e37828

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen H, Duan X, Liu F, Lu F, Ma X, Zhang Y, Uddin LQ, Chen H (2016) Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—a multi-center study. Prog Neuro-Psychopharmacol Biol Psychiatry 64:1–9

    Google Scholar 

  19. Brookes MJ, Tewarie PK, Hunt BA, Robson SE, Gascoyne LE et al (2016) A multi-layer network approach to MEG connectivity analysis. NeuroImage 132:425–438

    PubMed  PubMed Central  Google Scholar 

  20. Yu R, Chien YL, Wang HL, Liu CM, Liu CC et al (2014) Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Hum Brain Mapp 35:627–637

    PubMed  Google Scholar 

  21. Yu X, Yuan B, Cao Q, Li A, Wang P et al (2016) Frequency-specific abnormalities in regional homogeneity among children with attention deficit hyperactivity disorder: a resting-state fMRI study. Sci Bull 61:682–692

    Google Scholar 

  22. Zhang Y, Zhang H, Chen X, Shen D (2017) Constructing multi-frequency high-order functional connectivity network for diagnosis of mild cognitive impairment. pp. 9–16

  23. Zhang N, Zhu X-H, Chen W (2008) Investigating the source of BOLD nonlinearity in human visual cortex in response to paired visual stimuli. Neuroimage 43:204–212

    PubMed  PubMed Central  Google Scholar 

  24. Yeşilyurt B, Uğurbil K, Uludağ K (2008) Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magn Reson Imaging 26:853–862

    PubMed  Google Scholar 

  25. Lahaye PJ, Poline JB, Flandin G, Dodel S, Garnero L (2003) Functional connectivity: studying nonlinear, delayed interactions between BOLD signals. Neuroimage 20:962–974

    PubMed  Google Scholar 

  26. Zuo X-N, Di Martino A, Kelly C, Shehzad ZE, Gee DG et al (2010) The oscillating brain: complex and reliable. Neuroimage 49:1432–1445

    PubMed  Google Scholar 

  27. Wang X, Zhang Y, Long Z, Zheng J, Zhang Y, Han S, Wang Y, Duan X, Yang M, Zhao J, Chen H (2017) Frequency-specific alteration of functional connectivity density in antipsychotic-naive adolescents with early-onset schizophrenia. J Psychiatr Res 95:68–75

    PubMed  Google Scholar 

  28. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22:1326–1333

    CAS  PubMed  Google Scholar 

  29. Malinen S, Vartiainen N, Hlushchuk Y, Koskinen M, Ramkumar P, Forss N, Kalso E, Hari R (2010) Aberrant temporal and spatial brain activity during rest in patients with chronic pain. Proc Natl Acad Sci U S A 107:6493–6497

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wood D, King M, Landis D, Courtney W, Wang R et al (2014) Harnessing modern web application technology to create intuitive and efficient data visualization and sharing tools. Front Neuroinform 8:71

    PubMed  PubMed Central  Google Scholar 

  31. Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4

  32. Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    CAS  Google Scholar 

  34. Cai S, Chong T, Peng Y, Shen W, Li J, et al. (2016) Altered functional brain networks in amnestic mild cognitive impairment: a resting-state fMRI study. Brain imaging and behavior: 1-13

  35. Wang B, Mezlini AM, Demir F, Fiume M (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11:333–337

    CAS  PubMed  Google Scholar 

  36. Yang X, Jin Y, Chen X, Zhang H, Li G, et al. (2016) Functional connectivity network fusion with dynamic thresholding for MCI diagnosis. Mach Learn Med Imaging 246-253

  37. Tong T, Gray K, Gao Q, Chen L, Rueckert D (2017) Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion. Pattern Recogn 63:171–181

    Google Scholar 

  38. Wen H, Liu Y, Rekik I, Wang S, Chen Z, et al. (2017) Combining disrupted and discriminative topological properties of functional connectivity networks as neuroimaging biomarkers for accurate diagnosis of early tourette syndrome children. Mol Neurobiol 1-19

  39. Golland P, Fischl B (2003) Permutation tests for classification: towards statistical significance in image-based studies. Springer. pp. 330–341

  40. Christian S, Antonio C, Petronilla B, Gilardi MC, Aldo Q et al (2015) Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Front Neurosci 9:307

    Google Scholar 

  41. Chen X, Zhang H, Zhang L, Shen C, Lee SW, Shen D (2017) Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum Brain Mapp 38:5019–5034

    PubMed  PubMed Central  Google Scholar 

  42. Jie B, Zhang D, Cheng B, Shen D (2015) Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp 36:489–507

    PubMed  Google Scholar 

  43. Wee C-Y, Yap P-T, Zhang D, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012) Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59:2045–2056

    PubMed  Google Scholar 

  44. Pol HH, Bullmore E (2013) Neural networks in psychiatry. Eur Neuropsychopharmacol 23:1–6

    Google Scholar 

  45. Vercammen A, Knegtering H, den Boer JA, Liemburg EJ, Aleman A (2010) Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry 67:912–918

    PubMed  Google Scholar 

  46. Meyer-Lindenberg A, Poline J-B, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatr 158:1809–1817

    CAS  PubMed  Google Scholar 

  47. Tregellas JR, Tanabe JL, Miller DE, Ross RG, Olincy A, Freedman R (2004) Neurobiology of smooth pursuit eye movement deficits in schizophrenia: an fMRI study. Am J Psychiatr 161:315–321

    PubMed  Google Scholar 

  48. Kim J-J, Kwon JS, Park HJ, Youn T, Kang DH, Kim MS, Lee DS, Lee MC (2003) Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: a [15O] H2O PET study. Am J Psychiatr 160:919–923

    PubMed  Google Scholar 

  49. Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, McDowell J, Braff DL (2002) Parietal dysfunction is associated with increased outcome-related decision-making in schizophrenia patients. Biol Psychiatry 51:995–1004

    PubMed  Google Scholar 

  50. Mitelman SA, Buchsbaum MS, Brickman AM, Shihabuddin L (2005) Cortical intercorrelations of frontal area volumes in schizophrenia. Neuroimage 27:753–770

    PubMed  Google Scholar 

  51. Ye T, Zu C, Jie B, Shen D, Zhang D et al (2015) Discriminative multi-task feature selection for multi-modality classification of Alzheimer’s disease. Brain Imaging Behav:1–11

  52. Zhao F, Qiao L, Shi F, Yap P-T, Shen D (2016) Feature fusion via hierarchical supervised local CCA for diagnosis of autism spectrum disorder. Brain Imaging Behavior 1-11

  53. Cabral C, Kambeitz-Ilankovic L, Kambeitz J, Calhoun VD, Dwyer DB, von Saldern S, Urquijo MF, Falkai P, Koutsouleris N (2016) Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance. Schizophr Bull 42:S110–S117

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Science Fund of China under Grant No.U1713208 and Program for Changjiang Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Zou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Yang, J. Multiple functional connectivity networks fusion for schizophrenia diagnosis. Med Biol Eng Comput 58, 1779–1790 (2020). https://doi.org/10.1007/s11517-020-02193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02193-x

Keywords

Navigation