Skip to main content
Log in

Improving the power of objective response detection of evoked responses in noise by using average and product of magnitude-squared coherence of two different signals

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Objective response detection (ORD) techniques such as the magnitude-squared coherence (MSC) are mathematical methods tailored to detect potentials evoked by an external periodic stimulation. The performance of the MSC is directly proportional to the signal-to-noise ratio (SNR) of the recorded signal and the time spent for collecting data. An alternative to increasing the performance of detection techniques without increasing data recording time is to use the information from more than one signal simultaneously. In this context, this work proposes two new detection techniques based on the average and on the product of MSCs of two different signals. The critical values and detection probabilities were obtained theoretically and using a Monte Carlo simulation. The performances of the new detectors were evaluated using synthetic data and electroencephalogram (EEG) signals during photo and auditory stimulation. For the synthetic signals, the two proposed detectors exhibited a higher detection rate when compared to the rate of the traditional MSC technique. When applied to EEG signals, these detectors resulted in an increase of the mean detection rate in relation to MSC for visual and auditory stimulation of at least 25% and 13.21%, respectively. The proposed detectors may be considered as promising tools for clinical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Electroencephalogr Clin Neurophysiol 73:84. https://doi.org/10.1016/0013-4694(89)90022-9

    Article  Google Scholar 

  2. Palaniappan R (2010) Biological signal analysis. Ventus Publishing, Denmark

  3. Dobie RA, Wilson MJ (1989) Analysis of auditory evoked potentials by magnitude-squared coherence. Ear Hear 10:2–13. https://doi.org/10.1097/00003446-198902000-00002

    Article  CAS  PubMed  Google Scholar 

  4. Fridman J, Zappulla R, Bergelson M, Greenblatt E, Mails L, Morrell F, Hoeppner T (1984) Application of phase spectral analysis for brain stem auditory evoked potential detection in normal subjects and patients with posterior fossa tumors. Int J Audiol 23:99–113. https://doi.org/10.3109/00206098409072825

    Article  CAS  Google Scholar 

  5. Fisher RA (1929) Tests of significance in harmonic analysis. Proc R Soc London, Ser A 125:54–59. https://doi.org/10.1098/rspa.1929.0151

    Article  Google Scholar 

  6. Mijares E, Pérez Abalo MC, Herrera D, Lage A, Vega M (2013) Comparing statistics for objective detection of transient and steady-state evoked responses in newborns. Int J Audiol 52:44–49. https://doi.org/10.3109/14992027.2012.736030

    Article  PubMed  Google Scholar 

  7. Vanheusden FJ, Bell SL, Chesnaye MA, Simpson DM (2019) Improved detection of vowel envelope frequency following responses using Hotelling’s T 2 analysis. Ear Hear 40:116–127. https://doi.org/10.1097/AUD.0000000000000598

    Article  PubMed  Google Scholar 

  8. Cebulla M, Stürzebecher E, Elberling C (2006) Objective detection of auditory steady-state responses: comparison of one-sample and q-sample tests. J Am Acad Audiol 17:93–103. https://doi.org/10.3766/jaaa.17.2.3

    Article  PubMed  Google Scholar 

  9. Dobie RA (1993) Objective response detection. Ear Hear 14:31–35. https://doi.org/10.1097/00003446-199302000-00005

    Article  CAS  PubMed  Google Scholar 

  10. Kay SM (1998) Fundamentals of statistical signal processing, volume 2: detection theory. Signal Process II:672

    Google Scholar 

  11. Sininger YS, Hunter LL, Hayes D, Roush PA, Uhler KM (2018) Evaluation of speed and accuracy of next-generation auditory steady state response and auditory brainstem response audiometry in children with normal hearing and hearing loss. Ear Hear 39:1–1223. https://doi.org/10.1097/AUD.0000000000000580

    Article  Google Scholar 

  12. Felix LB, Rocha PFF, Mendes EMAM, Miranda de Sá AMFL (2018) Multivariate approach for estimating the local spectral F-test and its application to the EEG during photic stimulation. Comput Methods Prog Biomed 162:87–91. https://doi.org/10.1016/j.cmpb.2018.05.010

    Article  Google Scholar 

  13. Felix LB, Miranda De Sá AMFL, Infantosi AFC, Yehia HC (2007) Multivariate objective response detectors (MORD): statistical tools for multichannel EEG analysis during rhythmic stimulation. Ann Biomed Eng 35:443–452. https://doi.org/10.1007/s10439-006-9231-4

    Article  PubMed  Google Scholar 

  14. Miranda de Sá AMFL, Felix LB, Infantosi AFC (2004) A matrix-based algorithm for estimating multiple coherence of a periodic signal and its application to the multichannel EEG during sensory stimulation. IEEE Trans Biomed Eng 51:1140–1146. https://doi.org/10.1109/TBME.2004.827952

    Article  PubMed  Google Scholar 

  15. Malekpour S, Gubner JA, Sethares WA (2018) Measures of generalized magnitude-squared coherence: differences and similarities. J Frankl Inst 355:2932–2950. https://doi.org/10.1016/j.jfranklin.2018.01.014

    Article  Google Scholar 

  16. Rocha PFF, Felix LB, Miranda de Sá AMFL, Mendes EMAM (2016) Multivariate evoked response detection based on the spectral F-test. J Neurosci Methods 264:113–118. https://doi.org/10.1016/j.jneumeth.2016.03.005

    Article  PubMed  Google Scholar 

  17. Van Dun B, Wouters J, Moonen M (2007) Improving auditory steady-state response detection using independent component analysis on multichannel EEG data. IEEE Trans Biomed Eng 54:1220–1230. https://doi.org/10.1109/TBME.2007.897327

    Article  PubMed  Google Scholar 

  18. Van Dun B, Wouters J, Moonen M (2009) Optimal electrode selection for multi-channel electroencephalogram based detection of auditory steady-state responses. J Acoust Soc Am 126:254–268. https://doi.org/10.1121/1.3133872

    Article  PubMed  Google Scholar 

  19. Heinrich SP (2009) Permutation-based significance tests for multiharmonic steady-state evoked potentials. IEEE Trans Biomed Eng 56:534–537. https://doi.org/10.1109/TBME.2008.2006021

    Article  PubMed  Google Scholar 

  20. Bharadwaj HM, Shinn-Cunningham BG (2014) Rapid acquisition of auditory subcortical steady state responses using multichannel recordings. Clin Neurophysiol 125:1878–1888. https://doi.org/10.1016/j.clinph.2014.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  21. Almurshedi A, Ismail AK (2014) Cross coherence independent component analysis in resting and action states EEG discrimination. J Phys Conf Ser 546:012019. https://doi.org/10.1088/1742-6596/546/1/012019

    Article  Google Scholar 

  22. Guo M, Xu G, Wang L, Masters M, Milsap G, Thakor N, Soares AB (2015) The anterior contralateral response improves performance in a single trial auditory oddball BMI. Biomed Signal Process Control 22:74–84. https://doi.org/10.1016/j.bspc.2015.06.014

    Article  Google Scholar 

  23. Seraj E, Sameni R (2017) Robust electroencephalogram phase estimation with applications in brain-computer interface systems. Physiol Meas 38:501–523. https://doi.org/10.1088/1361-6579/aa5bba

    Article  PubMed  Google Scholar 

  24. Kaongoen N, Jo S (2017) A novel hybrid auditory BCI paradigm combining ASSR and P300. J Neurosci Methods 279:44–51. https://doi.org/10.1016/j.jneumeth.2017.01.011

    Article  PubMed  Google Scholar 

  25. Souza AP, Soares QB, Felix LB, Mendes EMAM (2018) Classification of auditory selective attention using spatial coherence and modular attention index. Comput Methods Prog Biomed 166:107–113. https://doi.org/10.1016/j.cmpb.2018.10.002

    Article  Google Scholar 

  26. Felix LB, Antunes F, da Carvalho JAS et al (2018) Comparison of univariate and multivariate magnitude-squared coherences in the detection of human 40-Hz auditory steady-state evoked responses. Biomed Signal Process Control 40:234–239. https://doi.org/10.1016/j.bspc.2017.09.024

    Article  Google Scholar 

  27. da Eloi BFS, Antunes F, Felix LB (2018) Improving the detection of auditory steady-state responses near 80 Hz using multiple magnitude-squared coherence and multichannel electroencephalogram. Biomed Signal Process Control 42:158–161. https://doi.org/10.1016/j.bspc.2018.01.017

    Article  Google Scholar 

  28. Dobie RA, Wilson MJ (1993) Objective response detection in the frequency domain. Electroencephalogr Clin Neurophysiol Evoked Potentials 88:516–524. https://doi.org/10.1016/0168-5597(93)90040-V

    Article  CAS  PubMed  Google Scholar 

  29. Dobie RA, Wilson MJ (1994) Objective detection of 40 Hz auditory evoked potentials: phase coherence vs. magnitude-squared coherence. Electroencephalogr Clin Neurophysiol Evoked Potentials 92:405–413. https://doi.org/10.1016/0168-5597(94)90017-5

    Article  CAS  PubMed  Google Scholar 

  30. Stürzebecher E, Cebulla M, Wernecke KD (2001) Objective detection of transiently evoked otoacoustic emissions. Scand Audiol 30:78–88. https://doi.org/10.1080/010503901300112185

    Article  PubMed  Google Scholar 

  31. Wianda E, Ross B (2016) Detecting neuromagnetic synchrony in the presence of noise. J Neurosci Methods 262:41–55. https://doi.org/10.1016/j.jneumeth.2016.01.012

    Article  PubMed  Google Scholar 

  32. Santos TS, Silva JJ, Lins OG, Melges DB, Tierra-Criollo CJ (2016) Detection efficiency of auditory steady state evoked by modulated noise. Hear Res 339:125–131. https://doi.org/10.1016/j.heares.2016.05.017

    Article  CAS  PubMed  Google Scholar 

  33. Miranda de Sá AMFL, Ferreira DD, Dias EW, Mendes EMAM, Felix LB (2009) Coherence estimate between a random and a periodic signal: Bias, variance, analytical critical values, and normalizing transforms. J Frankl Inst 346:841–853. https://doi.org/10.1016/j.jfranklin.2009.07.009

    Article  Google Scholar 

  34. Shah AS, Bressler SL, Knuth KH, Ding M, Mehta AD, Ulbert I, Schroeder CE (2004) Neural dynamics and the fundamental mechanisms of event-related brain potentials. Cereb Cortex 14:476–483. https://doi.org/10.1093/cercor/bhh009

    Article  PubMed  Google Scholar 

  35. Miranda de Sá AMFL (2004) A note on the sampling distribution of coherence estimate for the detection of periodic signals. IEEE Signal Process Lett 11:323–325. https://doi.org/10.1109/LSP.2003.821751

    Article  Google Scholar 

  36. Santos Filho SA, Tierra-Criollo CJ, Souza AP, Silva Pinto MA, Cunha Lima ML, Manzano GM (2009) Magnitude squared of coherence to detect imaginary movement. EURASIP J Adv Signal Process 2009:2009. https://doi.org/10.1155/2009/534536

    Article  Google Scholar 

  37. Miranda de Sá AMFL, Felix LB (2002) Improving the detection of evoked responses to periodic stimulation by using multiple coherence – application during photic stimulation. Med Eng Phys 24:245–252

    Article  Google Scholar 

  38. Nadarajah S (2006) Sums, products and ratios of generalized beta variables. Stat Pap 47:69–90. https://doi.org/10.1007/s00362-005-0273-8

    Article  Google Scholar 

  39. Nadarajah S (2009) Reply to comments on “Sums, Products, and Ratios of Non-Central Beta Variables” by Saralees Nadarajah by Antonio Mauricio F. L. Miranda de Sa, Leonardo B. Felix, and Eduardo M. A. M. Mendes. Commun Stat - Theory Methods 38:2428–2433. https://doi.org/10.1080/03610920802562756

    Article  Google Scholar 

  40. Nadarajah S (2005) Sums, products, and ratios of non-central beta variables. Commun Stat - Theory Methods 34:89–100. https://doi.org/10.1081/STA-200045865

    Article  Google Scholar 

  41. Papoulis A (1991) Probability, random variables and stochastic processes. Book 678:378. https://doi.org/10.2307/1266379

    Article  Google Scholar 

  42. Lins OG, Picton TW (1995) Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalogr Clin Neurophysiol Potentials Sect 96:420–432. https://doi.org/10.1016/0168-5597(95)00048-W

    Article  CAS  Google Scholar 

  43. John MS, Picton TW (2000) MASTER: a Windows program for recording multiple auditory steady-state responses. Comput Methods Prog Biomed 61:125–150. https://doi.org/10.1016/0168-5597(95)00048-W

    Article  CAS  Google Scholar 

  44. Picciotti PM, Giannantonio S, Paludetti G, Conti G (2013) Steady state auditory evoked potentials in normal hearing subjects: evaluation of threshold and testing time. Orl 74:310–314. https://doi.org/10.1159/000345497

    Article  Google Scholar 

  45. Hatton JL, Stapells DR (2013) Monotic versus dichotic multiple-stimulus auditory steady state responses in young children. Ear Hear 34:680–682. https://doi.org/10.1097/AUD.0b013e31828d2c1d

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001, CNPq, FAPEMIG, and FAPERJ.

Funding

FAPEMIG, FAPERJ, CNPq, CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Zanotelli.

Ethics declarations

The local Ethics Committees IFF-FIOCRUZ/MS and CEP/UFV(1.616.098) approved this research, and all volunteers gave written informed consent to participate.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

κ A(f)

Average coherence

ASSR

Auditory steady-state response

CSM

Component synchrony measure

DR

Detection rate

EEG

Electroencephalogram

EP

Evoked potential

FP

False positives

H 0

Null hypothesis

MORD

Multivariate objective response detectors

MSC

Magnitude-squared coherence

NDR

Number of detected responses

NT

Number of tests

ORD

Objective response detection

PDF

Probability density function

PD

Probability of detecting

κ P(f)

Product coherence

SNR

Signal-to-noise

SFT

Spectral F-test (SFT)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanotelli, T., Leite Miranda de Sá, A.M.F., Mendes, E.M.A.M. et al. Improving the power of objective response detection of evoked responses in noise by using average and product of magnitude-squared coherence of two different signals. Med Biol Eng Comput 57, 2203–2214 (2019). https://doi.org/10.1007/s11517-019-02020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02020-y

Keywords

Navigation