Skip to main content
Log in

Hemodialysis vascular access stenosis detection using auditory spectro-temporal features of phonoangiography

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

For end-stage renal disease patients undergoing hemodialysis, thrombosis caused by stenosis hinders the long-term use of vascular access. However, traditional spectral bruit analysis techniques for detecting the severity of vascular access stenosis are not robust. Accordingly, the present study proposes an automated method for mimicking a trained practitioner in performing the auscultation process. In the proposed approach, the bruit obtained using a standard phonoangiographic method is transformed into the time–frequency domain, and two spectro-temporal features, namely the auditory spectrum flux and the auditory spectral centroid, are then extracted. The distributions of the two features are analyzed using a multivariate Gaussian distribution (MGD) model. Finally, the distribution parameters of the MGD model are used to detect the presence (or otherwise) of vascular access stenosis. The validity of the proposed approach is investigated using the phonoangiography signals obtained from 16 hemodialysis patients with straight arteriovenous grafts over the upper arm region. The results show that the MGD covariance matrix coefficient of the auditory spectral centroid feature yields an accuracy of 83.87 % in detecting significant vascular access stenosis. Thus, the proposed method has significant potential for the applications of vascular access stenosis detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akay YM, Welkowitz W, Semmlow JL, Kostis JB (1993) Noninvasive acoustical detection of coronary artery disease: a comparative study of signal processing methods. IEEE Trans Biomed Eng 40:571–578

    Article  CAS  PubMed  Google Scholar 

  2. Allon M, Robbin ML (2009) Hemodialysis vascular access monitoring: current concepts. Hemodial Int 13:153–162

    Article  PubMed Central  PubMed  Google Scholar 

  3. Alvarez-Linera J, Benito-León J, Escribano J, Campollo J, Gesto R (2003) Prospective evaluation of carotid artery stenosis: elliptic centric contrast-enhanced MR angiography and spiral CT angiography compared with digital subtraction angiography. Am J Neuroradiol 24(5):1012–1019

    PubMed  Google Scholar 

  4. Asif A, Gadalean FN, Merrill D, Cherla G, Cipleu CD, Epstein DL et al (2005) Inflow stenosis in arteriovenous fistulas and grafts: a multicenter, prospective study. Kidney Int 67:1986–1992

    Article  PubMed  Google Scholar 

  5. Athineos M, Ellis DPW (2007) Autoregressive modeling of temporal envelopes. IEEE Trans Signal Process 55:5237–5245

    Article  Google Scholar 

  6. Avendaño-Valencia LD, Godino-Llorente JI, Blanco-Velasco M, Castellanos-Dominguez G (2010) Feature extraction from parametric time-frequency representations for heart murmur detection. Ann Biomed Eng 38:2716–2732

    Article  PubMed  Google Scholar 

  7. Bereksi-Reguig F, Debbal SM (2006) Cardiac murmur analysis using the short-time Fourier transform. J Mech Med Biol 6:273–284

    Article  Google Scholar 

  8. Chen WL, Chen T, Lin CH, Chen PJ, Kan CD (2003) Phonographic signal with a fractional-order chaotic system: a novel and simple algorithm for analyzing residual arteriovenous access stenosis. Med Biol Eng Comput 51:1011–1019

    Article  Google Scholar 

  9. Chen WL, Kan CD, Lin CH, Chen T (2014) A rule-based decision-making diagnosis system to evaluate arteriovenous shunt stenosis for hemodialysis treatment of patients using fuzzy petri nets. IEEE J Biomed Health Inform 18:703–713

    Article  PubMed  Google Scholar 

  10. Cherif LH, Debbal SM, Bereksi-Reguig F (2010) Choice of the wavelet analyzing in the phonocardiogram signal analysis using the discrete and the packet wavelet transform. Expert Syst Appl 37:913–918

    Article  Google Scholar 

  11. Choi S, Jiang Z (2008) Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst Appl 34:1056–1069

    Article  Google Scholar 

  12. Dhingra RK, Young EW, Hulbert-Shearon TE, Leavey SF, Port FK (2001) Type of vascular access and mortality in U.S. hemodialysis patients. Kidney Int 60:1443–1451

    Article  CAS  PubMed  Google Scholar 

  13. Diegeler A, Thiele H, Falk V, Hambrecht R, Spyrantis N, Sick P et al (2002) Comparison of stenting with minimally invasive bypass surgery for stenosis of the left anterior descending coronary artery. N Engl J Med 347:561–566

    Article  PubMed  Google Scholar 

  14. Ergen B, Tatar Y, Gulcur HO (2012) Time–frequency analysis of phonocardiogram signals using wavelet transform: a comparative study. Comput Methods Biomech Biomed Engin 15:371–381

    Article  PubMed  Google Scholar 

  15. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  16. Feldman HI, Kobrin S, Wasserstein A (1996) Hemodialysis vascular access morbidity. J Am Soc Nephrol 7:523–535

    CAS  PubMed  Google Scholar 

  17. Fredberg JJ (1977) Origin and character of vascular murmurs: model studies. J Acoust Soc Am 61:1077–1085

    Article  CAS  PubMed  Google Scholar 

  18. Gianfelici F, Biagetti G, Crippa P, Turchetti C (2007) Multicomponent AM–FM representations: an asymptotically exact approach. IEEE Trans Audio Speech Lang Process 15:823–837

    Article  Google Scholar 

  19. Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138

    Article  CAS  PubMed  Google Scholar 

  20. Irino T, Patterson RD (2006) A dynamic compressive gammachirp auditory filterbank. IEEE Trans Audio Speech Lang Process 14:2222–2232

    Article  PubMed Central  PubMed  Google Scholar 

  21. Knox R, Breslau P, Strandness DE (1981) Quantitative carotid phonoangiography. Stroke 12(6):798–803

    Article  CAS  PubMed  Google Scholar 

  22. Lee CM, Zhang YT (2003) Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach. In: Biomedical engineering IEEE EMBS Asian-Pacific conference on, Nara, Japan, pp 194–195

  23. Lees R (1984) Phonoangiography: qualitative and quantitative. Ann Biomed Eng 12:55–62

    Article  CAS  PubMed  Google Scholar 

  24. Lees RS, Dewey CF (1970) Phonoangiography: a new noninvasive diagnostic method for studying arterial disease. Proc Natl Acad Sci 67:935–942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mansy HA, Hoxie SJ, Patel NH, Sandler RH (2005) Computerised analysis of auscultatory sounds associated with vascular patency of hemodialysis access. Med Biol Eng Comput 43:56–62

    Article  CAS  PubMed  Google Scholar 

  26. Maya ID, Oser R, Saddekni S, Barker J, Allon M (2004) Vascular access stenosis: comparison of arteriovenous grafts and fistulas. Am J Kidney Dis 44:859–865

    Article  PubMed  Google Scholar 

  27. Middleton WD, Picus DD, Marx MV, Melson GL (1989) Color Doppler sonography of hemodialysis vascular access: comparison with angiography. Am J Roentgenol 152(3):633–639

    Article  CAS  Google Scholar 

  28. Rosen RM, Parthasarathy SP, Turner AF, Blankenhorn DH, Roschke EJ (1977) Phonoangiography by autocorrelation. Circulation 55(4):626–633

    Article  CAS  PubMed  Google Scholar 

  29. Schwab SJ, Oliver MJ, Suhocki P, McCann R (2001) Hemodialysis arteriovenous access: detection of stenosis and response to treatment by vascular access blood flow. Kidney Int 59(1):358–362

    Article  CAS  PubMed  Google Scholar 

  30. Semmlow JL, Akay M, Welkowitz W (1990) Noninvasive detection of coronary artery disease using parametric spectral analysis methods. IEEE Eng Med Biol 9:33–36

    Article  CAS  Google Scholar 

  31. Seo J, Mittal R (2012) A coupled flow-acoustic computational study of bruits from a modeled stenosed artery. Med Biol Eng Comput 50:1025–1035

    Article  PubMed  Google Scholar 

  32. Sung P-H, Thompson WR, Wang J-N, Wang J-F, Jang L-S (2015) Computer-assisted auscultation: patent ductus arteriosus detection based on auditory time–frequency analysis. J Med Biol Eng. doi:10.1007/s40846-015-0008-9

  33. Teng Z, Wiesel A, Greco MS (2013) Multivariate generalized gaussian distribution: convexity and graphical models. IEEE Trans Signal Process 61:4141–4148

    Article  Google Scholar 

  34. Tessitore N, Mansueto G, Bedogna V, Lipari G, Poli A, Gammaro L et al (2003) A prospective controlled trial on effect of percutaneous transluminal angioplasty on functioning arteriovenous fistulae survival. J Am Soc Nephrol 14(6):1623–1627

    Article  PubMed  Google Scholar 

  35. Thomas S, Ganapathy S, Hermansky H (2008) Recognition of reverberant speech using frequency domain linear prediction. IEEE Signal Process Lett 15:681–684

    Article  Google Scholar 

  36. Tzanetakis G, Cook P (2002) Musical genre classification of audio signals. IEEE Trans Speech Audio Process 10:293–302

    Article  Google Scholar 

  37. U.S. Renal Data System, USRDS (2013) Annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. NIH, Bethesda 2013

    Google Scholar 

  38. Varghese SS, Frankel SH, Fischer PF (2007) Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J Fluid Mech 582:281–318

    Article  Google Scholar 

  39. Watanabe H, Muramatsu S, Kikuchi H (2010) Interval calculation of EM algorithm for GMM parameter estimation. In: Proceedings IEEE ISCAS 2010, Paris, France, pp 2686–2689

  40. Wiese P, Nonnast-Daniel B (2004) Colour Doppler ultrasound in dialysis access. Nephrol Dial Transplant 19:1956–1963

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Cheng Kung University Hospital (protocol No. NCKUH-10305001) and in part of the National Science Council of the Republic of China under Grant No. NSC 100-2221-E-006-248-MY3. The institutional review board of National Cheng Kung University Hospital approved this study and the IRB No. ER-99-186. We are grateful to Sheng-Hsiang Lin and Jia-Ling Wu for providing the statistical consulting services from the Biostatistics Consulting Center, National Cheng Kung University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Po-Hsun Sung or Ling-Sheng Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, PH., Kan, CD., Chen, WL. et al. Hemodialysis vascular access stenosis detection using auditory spectro-temporal features of phonoangiography. Med Biol Eng Comput 53, 393–403 (2015). https://doi.org/10.1007/s11517-014-1241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1241-z

Keywords

Navigation