Skip to main content

Advertisement

Log in

Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The objective of this study was to systematically assess the effects of pharyngeal anatomical details on breathing resistance and acoustic characteristics by means of computational modeling. A physiologically realistic nose-throat airway was reconstructed from medical images. Individual airway anatomy such as the uvula, pharynx, and larynx was then isolated for examination by gradually simplifying this image-based model geometry. Large eddy simulations with the FW-H acoustics model were used to simulate airflows and acoustic sound generation with constant flow inhalations in rigid-walled airway geometries. Results showed that pharyngeal anatomical details exerted a significant impact on breathing resistance and energy distribution of acoustic sound. The uvula constriction induced considerably increased levels of pressure drop and acoustic power in the pharynx, which could start and worsen snoring symptoms. Each source anatomy was observed to generate a unique spectrum with signature peak frequencies and energy distribution. Moreover, severe pharyngeal airway narrowing led to an upward shift of sound energy in the high-frequency range. Results indicated that computational aeroacoustic modeling appeared to be a practical tool to study breathing-related disorders. Specifically, high-frequency acoustic signals might disclose additional clues to the mechanism of apneic snoring and should be included in future acoustic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal S, Stone P, McGuinness K et al (2002) Sound frequency analysis and the site of snoring in natural and induced sleep. Clin Otolaryngol 27:162–166

    Article  CAS  PubMed  Google Scholar 

  2. Bodony DJ, Lele SK (2008) Current status of jet noise predictions using large-eddy simulation. AIAA J 46:364–380

    Article  Google Scholar 

  3. Brentner KS, Farassat F (2003) Modeling aerodynamically generated sound of helicopter rotors. Prog Aerosp Sci 39:83–120

    Article  Google Scholar 

  4. Dalmasso F, Prota R (1996) Snoring: analysis, measurement, clinical implications and applications. Eur Respir J 9:146–159

    Article  CAS  PubMed  Google Scholar 

  5. Emoto T, Abeyratne UR, Akutagawa M et al (2011) High frequency region of the snore spectra carry important information on the disease of sleep apnoea. J Med Eng Technol 35:425–431

    Article  CAS  PubMed  Google Scholar 

  6. Ffowcs Williams JE, Hawkings DL (1969) Sound generation by turbulence and surfaces in arbitrary motion. Phil Trans R Soc A264:321–342

    Article  Google Scholar 

  7. Gavriely N, Jensen O (1993) Theory and measurements of snores. J Appl Physiol 74:2828–2837

    CAS  PubMed  Google Scholar 

  8. Herzog M, Bremert T, Herzog B et al (2011) Analysis of snoring sound by psychoacoustic parameters. Eur Arch Otorhinolaryngol 268:463–470

    Article  PubMed  Google Scholar 

  9. Huang LX (1995) Mechanical modeling of palatal snoring. J Acoust Soc Am 97:3642–3648

    Article  CAS  PubMed  Google Scholar 

  10. Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62:40–65

    Article  Google Scholar 

  11. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  Google Scholar 

  12. Johnson K (2003) Acoustic and auditory phonetics. Wiley

  13. Larrosa F, Hernandez L, Morello A et al (2004) Laser-assisted uvulopalatoplasty for snoring: does it meet the expectations? Eur Respir J 24:66–70

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Kleinstreuer C (2011) Airflow analysis in the alveolar region using the lattice-Boltzmann method. Med Biol Eng Comput 49:441–451

    Article  CAS  PubMed  Google Scholar 

  15. Lin C-L, Tawhai MH, McLennan G et al (2007) Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol 157:295–309

    Article  PubMed Central  PubMed  Google Scholar 

  16. Liu ZS, Luo XY, Lee HP et al (2007) Snoring source identification and snoring noise prediction. J Biomech 40:861–870

    Article  CAS  PubMed  Google Scholar 

  17. Mihaescu M, Murugappan S, Kalra M et al (2008) Large Eddy simulation and Reynolds-averaged Navier-stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. J Biomech 41:2279–2288

    Article  PubMed  Google Scholar 

  18. Mihaescu M, Mylavarapu G, Gutmark EJ et al (2011) Large Eddy Simulation of the pharyngeal airflow associated with Obstructive Sleep Apnea Syndrome at pre and post-surgical treatment. J Biomech 44:2221–2228

    Article  PubMed  Google Scholar 

  19. Mittal R, Erath BD, Plesniak MW (2013) Fluid dynamics of human phonation and speech. In: Davis SH, Moin P (eds) Ann Rev Fluid Mech 45:437–467

  20. Miyazaki S, Itasaka Y, Ishikawa K et al (1998) Acoustic analysis of snoring and the site of airway obstruction in sleep related respiratory disorders. Acta Otolaryngol Suppl 537:47–51

    Article  CAS  PubMed  Google Scholar 

  21. Moin P, Squires K, Cabot W et al (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3:2746–2757

    Article  CAS  Google Scholar 

  22. Nicoud F, Ducros F (1999) Subgrid-scale stress modeling based on the square of the velocity gradient tensor. Flow Turbul Combust 62:183–200

    Article  CAS  Google Scholar 

  23. Pasterkamp H, Kraman SS, Wodicka GR (1997) Respiratory sounds: advances beyond the stethoscope. Am J Respir Crit Care Med 156:974–987

    Article  CAS  PubMed  Google Scholar 

  24. Perezpadilla JR, Slawinski E, Difrancesco LM et al (1993) Characteristics of the snoring noise in patients with and without occlusive sleep apnea. Am Rev Respir Dis 147:635–644

    Article  CAS  Google Scholar 

  25. Powell NB, Mihaescu M, Mylavarapu G et al (2011) Patterns in pharyngeal airflow associated with sleep-disordered breathing. Sleep Med 12:966–974

    Article  PubMed  Google Scholar 

  26. Quinn SJ, Huang L, Ellis PD et al (1996) The differentiation of snoring mechanisms using sound analysis. Clin Otolaryngol 21:119–123

    Article  CAS  PubMed  Google Scholar 

  27. Rappai M, Collop N, Kemp S et al (2003) The nose and sleep-disordered breathing: what we know and what we do not know. Chest 124:2309–2323

    Article  PubMed  Google Scholar 

  28. Revell JD, Prydz RA, Hays AP (1977) Experimental study of airframe noise versus drag relationship for circular cylinders. Lockheed report 28074, final report for NASA Contract NAS1-14403

  29. Rice DA (1980) Sound speed in the upper airways. J Appl Physiol 49:326–336

    CAS  PubMed  Google Scholar 

  30. Saunders NC, Tassone P, Wood G et al (2004) Is acoustic analysis of snoring an alternative to sleep nasendoscopy? Clin Otolaryngol 29:242–246

    Article  CAS  PubMed  Google Scholar 

  31. Sittitavornwong S, Waite PD, Shih AM et al (2009) Evaluation of obstructive sleep apnea syndrome by computational fluid dynamics. Semin Orthod 15:105–131

    Article  Google Scholar 

  32. Wodicka GR, Stevens KN, Golub HL et al (1989) A model of acoustic transmission in the respiratory system. IEEE Trans Biomed Eng 36:925–934

    Article  CAS  PubMed  Google Scholar 

  33. Xi J, Longest PW (2009) Characterization of submicrometer aerosol deposition in extrathoracic airways during nasal exhalation. Aerosol Sci Technol 43:808–827

    Article  CAS  Google Scholar 

  34. Xu C, Sin S, McDonough JM et al (2006) Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. J Biomech 39:2043–2054

    Article  PubMed  Google Scholar 

  35. Xu HJ, Huang WN, Yu LS et al (2010) Sound spectral analysis of snoring sound and site of obstruction in obstructive sleep apnea syndrome. Acta Otolaryngol (Stockh) 130:1175–1179

    Article  Google Scholar 

  36. Yu C-C, Hsiao H-D, Tseng T-I et al (2012) Computational fluid dynamics study of the inspiratory upper airway and clinical severity of obstructive sleep apnea. J Craniofac Surg 23:401–405

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Si, X., Kim, J. et al. Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound. Med Biol Eng Comput 52, 567–577 (2014). https://doi.org/10.1007/s11517-014-1160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1160-z

Keywords

Navigation