Skip to main content
Log in

Insight into Effects of high Intensity Ultrasound Treatment on Foamability and Physicochemical Properties of Frozen egg White Protein

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Frozen storage can greatly improve the shelf life of fresh egg white protein (EWP), but it will also lead to the reduction of protein foaming and can not meet the application needs. Herein, high-intensity ultrasound (HIUS) was used to improve the foam characteristics of EWP in different frozen storage periods. The results showed that compared with fresh egg white, the foaming ability of EWP with different freezing times (0, 3, 7, 14, 21 days) after HIUS treatment (20 kHz, 60% amplitude, 5 min) was significantly improved, especially the EWP after 21 days of frozen storage was doubled by HIUS induction. Furthermore, it was found that the improvement of EWP foamability was mainly due to the enhancement of surface hydrophobicity (H0, the value from 263 to 456) and the decrease of apparent viscosity (from 0.506 Pa.s to 0.007 Pa.s), which increased the diffusion rate of protein to the interface (from 0.19 mNm− 1s− 0.5 to 0.26 mNm− 1s− 0.5) and its adsorption amount (from 35.8 to 43.3%) at the interface. These results showed that HIUS was a simple, efficient and residue free way to improve the foam characteristics of frozen EWP, which has strong promotion and application value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Chen, L. Sheng, M. Gouda, M. Ma, LWT-Food Sci. Technol. 113, 108303 (2019)

    Article  CAS  Google Scholar 

  2. J. O’Sullivan, B. Murray, C. Flynn, I. Norton, Food Hydrocolloid. 53, 141–154 (2016)

    Article  Google Scholar 

  3. J. Zhu, D. Zhang, X. Zhou, Y. Cui, S. Jiao, X. Shi, Food Control 123, 107035 (2021)

    Article  CAS  Google Scholar 

  4. C.-Y. Ma, V.R. Harwalkar, L.M. Poste, M.R. Sahasrabudhe, Food Res. Int. 26(4), 247–254 (1993)

    Article  CAS  Google Scholar 

  5. V. Lechevalier, C. Guérin-Dubiard, M. Anton, V. Beaumal, E.D. Briand, A. Gillard, Y. Le Gouar, N. Musikaphun, G. Tanguy, M. Pasco, D. Dupont, F. Nau, J. Food Eng. 195, 137–149 (2017)

    Article  CAS  Google Scholar 

  6. V. Plancken, I.A. Van Loey, M.E. Hendrickx, J. Food Eng. 78(4), 1410–1426 (2007)

    Article  Google Scholar 

  7. B. Fang, K. Isobe, A. Handa, K. Nakagawa, J. Food Eng. 296, 110452 (2021)

    Article  CAS  Google Scholar 

  8. M.C. Erickson, Y.C. Hung, Quality in frozen food (Springer Science & Business Media, 2012), pp. 131–159

  9. C. Arzeni, O.E. Pérez, A.M.R. Pilosof, Food Hydrocolloid. 29(2), 308–316 (2012)

    Article  CAS  Google Scholar 

  10. Y. Yu, H. Zhang, J. Zhu, J. Liu, T. Zhang, J. Food Sci. 85(12), 4312–4318 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. W. Xiong, Y. Wang, C. Zhang, J. Wan, B.R. Shah, Y. Pei, B. Zhou, J. Li, B. Li, Ultrason. Sonochem 31, 302–309 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. L. Sheng, Y. Wang, J. Chen, J.Z.Q. Wang, M. Ma, Food Res. Int. 108, 604–610 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. M. Yüceer, C. Caner, Int. J. Food Sci. Tech. 55(4), 1629–1636 (2020)

    Article  Google Scholar 

  14. C. I.Nicorescu, E. Vial, V. Talansier, C. Lechevalier, D. Loisel, A. Della Valle, G. Riaublanc, Djelveh, J. Legrand Food Hydrocolloid 25(4), 797–808 (2011)

    Article  Google Scholar 

  15. F. Alavi, Z. Emam-Djomeh, M. Mohammadian, M. Salami, A.A. Moosavi-Movahedi, Food Hydrocolloid 101, 105554 (2020)

    Article  CAS  Google Scholar 

  16. M.S. Sadahira, M.I. Rodrigues, M. Akhtar, B.S. Murray, F.M. Netto, Food Hydrocolloid 58, 1–10 (2016)

    Article  CAS  Google Scholar 

  17. L. Ding, M. Xia, Q. Zeng, Q. Zhao, Z. Cai, Z. Zhu, LWT-Food Sci. Technol. 153, 112505 (2022)

    Article  CAS  Google Scholar 

  18. X. Li, Y. Yang, B.S. Murray, A. Sarkar, J. Food Eng. 275, 109860 (2020)

    Article  CAS  Google Scholar 

  19. W. Xiong, Q. Deng, J. Li, B. Li, Q. Zhong, Food Hydrocolloid 98, 105282 (2020)

    Article  CAS  Google Scholar 

  20. D.Reinoso, M.J.Martín-Alfonso, P.F.Luckham, F.J.Martínez-Boz, Carbohydr. Polym. 203, 103–109 (2019)

    Article  Google Scholar 

  21. W. Xiong, J. Li, B. Li, L. Wang, Food Hydrocolloid. 97, 105210 (2019)

    Article  CAS  Google Scholar 

  22. C. Caner, M. Yuceer, J. Sci. Food Agr 95(14), 2880–2891 (2015)

    Article  CAS  Google Scholar 

  23. M. Yüceer, C. Caner, J. Food Process. Pres. 45(3), e15261 (2021)

    Article  Google Scholar 

  24. X. Duan, J. Li, Q. Zhang, T. Zhao, M. Li, X. Xu, X. Liu, Food Chem. 228, 243–248 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. M. Zhou, J. Liu, Y. Zhou, X. Huang, F. Liu, S. Pan, H. Hu, Innov. Food Sci. Emerg. 34, 205–213 (2016)

    Article  CAS  Google Scholar 

  26. R. Shi, Y. Liu, J. Hu, H. Gao, A. Qayum, A. Bilawal, G. Munkh-Amgalan, Z. Jiang, J. Hou, Innov. Food Sci. Emerg. 65, 102450 (2020)

    Article  CAS  Google Scholar 

  27. N. Repin, S.W. Cui, H.D. Goff, Food Hydrocolloid 76, 216–225 (2018)

    Article  CAS  Google Scholar 

  28. M. Uygun-Sarıbay, E. Ergun, Y. Kalaycı, T. Köseoğlu, Int. J. Food Prop. 20, 1195–1203 (2017)

    Google Scholar 

  29. Y. Chen, M. Ma, Food Hydrocolloid 102, 105568 (2020)

    Article  CAS  Google Scholar 

  30. V. Lechevalier, T. Croguennec, S. Pezennec, C. Guérin-Dubiard, M. Pasco, F. Nau, J. Agric. Food Chem. 51(21), 6354–6361 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. T. Croguennec, A. Renault, S. Beaufils, J.J. Dubois, S. Pezenne, J. Colloid Interface Sci. 315(2), ,627 (2007) – 36(

    Article  CAS  PubMed  Google Scholar 

  32. C.Le Floch-Fouéré, S. Beaufils, V. Lechevalier, F. Nau, M.P.ézolet,A. Renault, S.Pezennec, Food Hydrocolloid. 24(4), ,275–284 (2010)

    Article  Google Scholar 

  33. X. Yang, T.K. Berry, E.A. Foegeding, J. Food Sci. 74(5), E259–E268 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. T.K. Berry, X. Yang, E.A. Foegeding, J. Food Sci. 74(5), E269–E277 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Liang, H.G. Kristinsson, Food Res. Int. 40(6), 668–678 (2007)

    Article  CAS  Google Scholar 

  36. P.A. Wierenga, M.B.J. Meinders, M.R. Egmond, F.A.G.J. Voragen, H. H. J. de Jongh, Langmuir 19(21), 8964–8970 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Key Laboratory of Food Nutrition and Functional Food of Hainan Province (No. KF202005), Natural Science Foundation of China (NSFC, No. 31860454) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Ya Li and Ling Yu performed the experiments, prepared the figures and tables, analyzed the data regarding and wrote the manuscript. Wenfei Xiong designed the experimental protocol. Lifeng Wang and Wenfei Xiong contributed to data interpretation and editing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenfei Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yu, L., Wang, L. et al. Insight into Effects of high Intensity Ultrasound Treatment on Foamability and Physicochemical Properties of Frozen egg White Protein. Food Biophysics 18, 198–207 (2023). https://doi.org/10.1007/s11483-022-09764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09764-5

Keywords

Navigation