Skip to main content

Advertisement

Log in

Optimization and Characterization of the Gelatin/Wheat Gliadin Nanofiber Electrospinning Process

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this study, we aimed to optimize the preparation process of gelatin/wheat gliadin nanofibers and to characterize gelatin/wheat gliadin nanofibers with different weight ratios. The optimization results showed that uniform nanofibers were prepared under the following conditions: a 2:4 (v/v) 70% (v/v) ethanol and acetic acid solvent system with 22% solute concentration and 15 kV, 15 cm, and 0.75 mL/h spinning parameters. Scanning electron microscopy showed that gelatin/wheat gliadin nanofibers had good morphology, and the diameter ranged from 154.18 ± 35.65 nm to 402.38 ± 51.21 nm. Fourier transform infrared, X-ray diffraction, and circular dichroism analyses confirmed the formation of hydrogen bonds between gelatin and wheat gliadin, which increased the structural order of the nanofibers. Thermal analysis indicated that the addition of wheat gliadin had changed the thermal stability of the mixture, and the weight loss of the nanofibers ranged from 68.18% to 81.21%. The highest tensile strength (3.65 ± 0.18 MPa) and elongation at break (35.55% ± 1.78%) were found at gelatin:wheat gliadin ratios of 2:1 and 1:2, respectively. The water contact angle >90° showed that mixed films were hydrophobic. These results showed that gelatin and wheat gliadin were uniformly dispersed in the films and improved the properties of the nanofibers.

Graphical abstract

Highlights

  • Electrospinning was optimized to produce gelatin/wheat gliadin nanofibers.

  • The gelatin/gliadin fibers were more ordered than gelatin or wheat gliadin fibers.

  • The surfaces of the gelatin/wheat gliadin nanofibers were hydrophobic.

  • The mixed fibers showed more water resistant than gelatin or wheat gliadin fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

DSC:

Differential scanning calorimetry

EAB:

Elongation at beak

FG:WG:

Fish gelatin:wheat gliadin

FTIR:

Fourier transform infrared

SEM:

Scanning electron microscopy

TGA:

Thermogravimetric analysis

TS:

Tensile strength

WCA:

Water contact angle

XRD:

X-ray diffraction

References

  1. H. Rostamabadi, E. Assadpour, H.S. Tabarestani, S.R. Falsafi, S.M. Jafari, Trends Food Sci. Technol. 100, 190–209 (2020)

    Article  CAS  Google Scholar 

  2. H. Cui, C. Zhang, C. Li, L. Lin, Ind. Crop. Prod. 140, 111739 (2019)

  3. P. Wen, M.-H. Zong, R.J. Linhardt, K. Feng, H. Wu, Trends Food Sci. Technol. 70, 56–68 (2017)

    Article  CAS  Google Scholar 

  4. Y. Wang, Z. Guo, Y. Qian, Z. Zhang, L. Lyu, Y. Wang, F. Ye, Polymers (Basel). 11(9), 1424 (2019)

    Article  CAS  Google Scholar 

  5. L. Deng, X. Zhang, Y. Li, F. Que, X. Kang, Y. Liu, F. Feng, H. Zhang, Food Hydrocoll. 75, 72–80 (2018)

    Article  CAS  Google Scholar 

  6. A. Thulasisingh, S. Kannaiyan, Bull. Mater. Sci. 44(2), 119 (2021)

    Article  CAS  Google Scholar 

  7. M. Erencia, F. Cano, J.A. Tornero, M.M. Fernandes, T. Tzanov, J. Macanás, F. Carrilo, J. Appl. Polym. Sci. 132, 25 (2015)

    Article  Google Scholar 

  8. S. Sahraee, J.M. Milani, B. Ghanbarzadeh, H. Hamishehkar, Int. J. Biol. Macromol. 97, 373–381 (2017)

    Article  CAS  Google Scholar 

  9. C. Zhou, M.A. Abdel-Samie, C. Li, H. Cui, L. Lin, Food Packag shelf. Life. 26, 100586 (2020)

  10. D. Wang, J. Sun, J. Li, Z. Sun, F. Liu, L. Du, D. Wang, Food Chem. 373, 131439 (2022)

  11. Y. Wang, L. Chen, Macromol. Mater. Eng. 297(9), 902–913 (2012)

    Article  CAS  Google Scholar 

  12. L. Deng, Y. Li, F. Feng, H. Zhang, Food Hydrocoll. 87, 1–10 (2019)

    Article  CAS  Google Scholar 

  13. S. Voci, M. Fresta, D. Cosco, J. Control. Release 329, 385–400 (2021)

    Article  CAS  Google Scholar 

  14. W. Wu, X. Kong, C. Zhang, Y. Hua, Y. Chen, Food Hydrocoll. 80, 78–87 (2018)

    Article  CAS  Google Scholar 

  15. T. Chen, Z. Song, H. Liu, C. Zhou, P. Hong, C. Deng, Food Biosci. 47, 101650 (2022)

  16. Z. Song, H. Liu, L. Chen, L. Chen, C. Zhou, P. Hong, C. Deng, Food Chem. 340, 128139 (2021)

  17. Y. Zhu, X. Chen, D.J. McClements, L. Zou, W. Liu, Food Hydrocoll. 77, 870–878 (2018)

    Article  CAS  Google Scholar 

  18. X. Guan, L. Li, S. Li, J. Liu, K. Huang, Food Biosci. 37, 100687 (2020)

  19. L. Li, H. Wang, M. Chen, S. Jiang, J. Cheng, X. Li, M. Zhang, S. Jiang, Food Hydrocoll. 101, 105577 (2020)

  20. M. Karim, M. Fathi, S. Soleimanian-Zad, Food Bioprod. Process. 122, 193–204 (2020)

    Article  CAS  Google Scholar 

  21. K. An, H. Liu, S. Guo, D.N.T. Kumar, Q. Wang, Int. J. Biol. Macromol. 47(3), 380–388 (2010)

    Article  CAS  Google Scholar 

  22. B.N. Singh, N.N. Panda, K. Pramanik, Int. J. Biol. Macromol. 87, 201–207 (2016)

    Article  CAS  Google Scholar 

  23. B. Ghorani, N. Tucker, Food Hydrocoll. 51, 227–240 (2015)

    Article  CAS  Google Scholar 

  24. P.K. Akman, F. Bozkurt, M. Balubaid, M.T. Yilmaz, Fiber Polym. 20(6), 1187–1199 (2019)

    Article  CAS  Google Scholar 

  25. H.W. Kwak, M. Shin, J.Y. Lee, H. Yun, D.W. Song, Y. Yang, B.-S. Shin, Y.H. Park, K.H. Lee, Int. J. Biol. Macromol. 102, 1092–1103 (2017)

    Article  CAS  Google Scholar 

  26. N. Okutan, P. Terzi, F. Altay, Food Hydrocoll. 39, 19–26 (2014)

    Article  CAS  Google Scholar 

  27. T.M. Righi, R.S. Almeida, M.A. d'Ávila, Macromol. Symp. 319(1), 230–234 (2012)

    Article  CAS  Google Scholar 

  28. Z. Sun, M. Li, Z. Jin, Y. Gong, Q. An, X. Tuo, J. Guo, Int. J. Biol. Macromol. 120, 2552–2559 (2018)

    Article  CAS  Google Scholar 

  29. N. Amiri, Z. Rozdeh, T. Afrough, S.A.S. Tavassi, A. Moradi, J. Movaffagh, BioNanoScience. 8, 778–789 (2018)

    Article  Google Scholar 

  30. A. Jabur, International Conference of Physics Scince. (2014). https://doi.org/10.13140/RG.2.2.14714.90569

  31. M.-M. Mousavi, M. Torbati, P. Farshi, H. Hosseini, M.A. Mohammadi, S.M. Hosseini, S. Hosseinzadeh, Adv Pharm Bull. 11(3), 514–521 (2021)

    Article  CAS  Google Scholar 

  32. S. Chen, Y. Ma, L. Dai, W. Liao, L. Zhang, J. Liu, Y. Gao, Food Hydrocoll. 118, 106758 (2021)

  33. L.C. Sow, N.Z.Y. Toh, C.W. Wong, H. Yang, Food Hydrocoll. 94, 459–467 (2019)

    Article  CAS  Google Scholar 

  34. L.C. Sow, S.J. Tan, H. Yang, Food Hydrocoll. 90, 9–18 (2019)

    Article  CAS  Google Scholar 

  35. L.C. Sow, H. Yang, Food Hydrocoll. 45, 72–82 (2015)

    Article  CAS  Google Scholar 

  36. M. Li, H. Yu, Y. Xie, Y. Guo, Y. Cheng, H. Qian, W. Yao, LWT - Food Sci Technol. 139, 110800 (2021)

  37. L. Deng, X. Kang, Y. Liu, F. Feng, H. Zhang, Food Hydrocoll. 74, 324–332 (2018)

    Article  CAS  Google Scholar 

  38. F. Liu, Y. Liu, Z. Sun, D. Wang, H. Wu, L. Du, D. Wang, Int. J. Biol. Macromol. 164, 3376–3387 (2020)

    Article  CAS  Google Scholar 

  39. B. Vafania, M. Fathi, S. Soleimanian-Zad, Food Bioprod. Process. 116, 240–248 (2019)

    Article  CAS  Google Scholar 

  40. E. Tavassoli-Kafrani, S.A.H. Goli, M. Fathi, Int. J. Biol. Macromol. 103, 1062–1068 (2017)

    Article  CAS  Google Scholar 

  41. Z. Song, H. Liu, A. Huang, C. Zhou, P. Hong, C. Deng, J. Food Eng. 317, 110860 (2022)

  42. Y. Liu, D. Wang, Z. Sun, F. Liu, L. Du, D. Wang, Int. J. Biol. Macromol. 169, 161–170 (2021)

    Article  CAS  Google Scholar 

  43. B. Ghorani, B. Emadzadeh, H. Rezaeinia, S.J. Russell, Food Hydrocoll. 104, 105740 (2020)

  44. Y. Zhang, L. Deng, H. Zhong, Y. Zou, Z. Qin, Y. Li, H. Zhang, Food Chem. 366, 130586 (2022)

  45. C.S. Ki, D.H. Baek, K.D. Gang, K.H. Lee, I.C. Um, Y.H. Park, Polymer. 46(14), 5094–5102 (2005)

    Article  CAS  Google Scholar 

  46. L. Li, H. Wang, M. Chen, S. Jiang, S. Jiang, X. Li, Q. Wang, Food Chem. 269, 142–149 (2018)

    Article  CAS  Google Scholar 

  47. Y.P. Neo, S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M.K. Nieuwoudt, D. Liu, S.Y. Quek, Food Chem. 136(2), 1013–1021 (2013)

    Article  CAS  Google Scholar 

  48. H. Homayoni, S.A.H. Ravandi, M. Valizadeh, Carbohydr. Polym. 77(3), 656–661 (2009)

    Article  CAS  Google Scholar 

  49. Y. Li, C. Tang, Q. He, Food Biosci. 41, 100927 (2021)

Download references

Acknowledgements

The authors are grateful to the Editage (www.editage.cn) for English language editing.

Funding

This work was supported by the Southern Marine Science and Engineering Laboratory (Zhanjiang) (ZJW-2019-07); the Innovation and Development Project about Marine Economy Demonstration of Zhanjiang City (2017C8B1); the Innovation Team Construction Project of Modern Agricultural Industry Technology System in Guangdong Province (2021KJ150); the Science and Technology plan project of Zhanjiang City (2019A03021); and the Innovative Team Program of High Education of Guangdong Province (2021KCXTD021).

Author information

Authors and Affiliations

Authors

Contributions

Tingju Chen: Investigation, Methodology, Writing-Original draft preparation. Huanming Liu: Conceptualization, Methodology, Writing-Reviewing, Editing. Chujin Deng: Reviewing, Editing, and Resources. Chunxia Zhou: Reviewing and Editing. Pengzhi Hong: Funding acquisition, Supervision.

Corresponding author

Correspondence to Huanming Liu.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to report.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

Scanning electron microscopy (SEM) images and diameter trend of the gelatin/wheat gliadin nanofibers at various voltages (a) 12 kV, (b) 15 kV, (c) 18 kV, (d) 21 kV, (e) 24 kV, (f) diameter trend. Parameters: 2:4 (v/v) 70% (v/v) ethanol and acetic acid, 22% (w/v) solute concentrations (gelatin:wheat gliadin 1:1, w/w), 15 cm receiving distance, and 0.5 mL/h injection rate. (PNG 2161 kb)

High Resolution Image (TIF 75793 kb)

Fig. S2

Scanning electron microscopy (SEM) images and diameter trend of the gelatin/wheat gliadin nanofibers at various receiving distances (a) 11 cm, (b) 13 cm, (c) 15 cm, (d) 17 cm, (e) 19 cm, (f) diameter trend. Parameters: 2:4 (v/v) 70% (v/v) ethanol and acetic acid, 22% (w/v) solute concentrations (gelatin:wheat gliadin 1:1, w/w), 15 kV voltage, and 0.5 mL/h injection rate. (PNG 2164 kb)

High Resolution Image (TIF 75756 kb)

Fig. S3

Scanning electron microscopy (SEM) images and diameter trend of the gelatin/wheat gliadin nanofibers at various injection rates (a) 0.25 mL/h, (b) 0.5 mL/h, (c) 0.75 mL/h, (d) 1.0 mL/h, (e) 1.25 mL/h, (f) diameter trend. Parameters: 2:4 (v/v) 70% (v/v) ethanol and acetic acid, 22% (w/v) solute concentrations (gelatin:wheat gliadin 1:1, w/w), 15 kV voltage, and 15 cm receiving distance. (PNG 2180 kb)

High Resolution Image (TIF 76000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Liu, H., Deng, C. et al. Optimization and Characterization of the Gelatin/Wheat Gliadin Nanofiber Electrospinning Process. Food Biophysics 17, 621–634 (2022). https://doi.org/10.1007/s11483-022-09748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09748-5

Keywords

Navigation