Skip to main content
Log in

Effect of polyphenolic compounds on starch retrogradation and in vitro starch digestibility of rice cakes under different storage temperatures

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The effects of matcha (MAT), tea polyphenols (TP) and catechin (CAT) on rice cakes during storage for 180 days at 4 °C and 25 °C were evaluated using textural properties, water migration, XRD spectra and in vitro starch digestibility. Polyphenolic compounds, especially TP and CAT, primarily retarded the starch retrogradation of rice cakes by interacting with starch chains, which lowered the content of bonded water, as indicated by water migration and a lower relative crystallinity. The reduction of hardness and increase of adhesiveness was attributed to inhibition of starch chain cross-linking by the polyphenolic compounds (CAT and TP in particular). The polyphenolic compounds synergistically affected starch re-association at a high storage temperature (25 °C) and decreased the variance of rice cake quality caused by starch retrogradation during storage at 4 °C. The starch digestion of rice cakes was inhibited by polyphenolic compounds, especially CAT, which concomitantly increased the content of resistant starch. Furthermore, polyphenolic compounds reduced the changes of various properties which caused the stabilization of rice cake quality during long-term storage. Our study could provide an alternative for improving rice cake quality affected by storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.S. Lee, H.G. Song, I. Choi, J.S. Lee, J. Han, Carbohydr. Polym 247, 116696 (2020). https://doi.org/10.1016/j.carbpol.2020.116696

    Article  CAS  PubMed  Google Scholar 

  2. M. Tamura, J. Singh, L. Kaur, Y. Ogawa, Food Chem 191, 91–97 (2016). https://doi.org/10.1016/j.foodchem.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  3. C.C. Seow, C.H. Teo, Starch - Stärke 48(3), 90–93 (1996). https://doi.org/10.1002/star.19960480304

    Article  CAS  Google Scholar 

  4. N.A. Abdulmola, R.K. Richardson, E.R. Morris, Food Hydrocolloids 14(6), 569–577 (2000). https://doi.org/10.1016/S0268-005X(00)00038-2

    Article  CAS  Google Scholar 

  5. M. Mariotti, N. Sinelli, F. Catenacci, M.A. Pagani, M. Lucisano, J. Cereal Sci. 49(2), 171–177 (2009). https://doi.org/10.1016/j.jcs.2008.09.005

    Article  CAS  Google Scholar 

  6. J.K. Jang, Y.R. Pyun, Starch - Stärke 49(7–8), 272–277 (1997). https://doi.org/10.1002/star.19970490705

    Article  CAS  Google Scholar 

  7. L. Chen, Y. Tian, Q. Tong, Z. Zhang, Z. Jin, Food Chem. 214, 702–709 (2017). https://doi.org/10.1016/j.foodchem.2016.07.122

    Article  CAS  PubMed  Google Scholar 

  8. J. Pan, M. Li, S. Zhang et al., Food Chem. 294, 209–215 (2019). https://doi.org/10.1016/j.foodchem.2019.05.048

    Article  CAS  PubMed  Google Scholar 

  9. M. da Silva Pinto, Food Res Int 53(2), 558–567 (2013). https://doi.org/10.1016/j.foodres.2013.01.038

    Article  CAS  Google Scholar 

  10. Y. Wu, Z. Chen, X. Li, M. Li, Food Res. Int. 42(2), 221–225 (2009). https://doi.org/10.1016/j.foodres.2008.11.001

    Article  CAS  Google Scholar 

  11. L. Wu, L. Che, X.D. Chen, J. Food. Sci. 79(10), E1984–E1990 (2014). https://doi.org/10.1111/1750-3841.12589

    Article  CAS  PubMed  Google Scholar 

  12. X.Q. Han, M.W. Zhang, R.F. Zhang et al., LWT-Food Sci Technol 125, 24–366 (2020). https://doi.org/10.1016/j.lwt.2020.109227

    Article  CAS  Google Scholar 

  13. W. Hu, J. Chen, F. Xu, L. Chen, Shipin Kexue/Food Science 40(17), 85–95 (2019). https://doi.org/10.7506/spkx1002-6630-20190115-157

    Article  Google Scholar 

  14. T. Sun, J. Chen, F. Xu, L. Chen, J Henan Univ Technol (Natural Science Edition) 41(01), 84–90 (2020). https://doi.org/10.16433/j.1673-2383.2020.01.014

    Article  CAS  Google Scholar 

  15. V. L. Singleton, R. Orthofer and R. M. Lamuela-Raventós, in Oxidants and Antioxidants Part A (Academic Press, 1999), Vol. 299, pp. 152–178. https://doi.org/10.1016/s0076-6879(99)99017-1

  16. L.W. Meng, S.M. Kim, Food Sci. Biotechnol. 29(4), 503–512 (2020). https://doi.org/10.1007/s10068-019-00693-7

    Article  CAS  PubMed  Google Scholar 

  17. Y. Park, I.K. Oh, S.W. Park, K. Ryu, S. Lee, Food Chem. 276, 9–14 (2019). https://doi.org/10.1016/j.foodchem.2018.09.168

    Article  CAS  PubMed  Google Scholar 

  18. W.-X. Hu, J. Chen, F. Xu, L. Chen, J.-W. Zhao, Int. J. Biol. Macromol. 148, 1232–1241 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.020

    Article  CAS  PubMed  Google Scholar 

  19. H.N. Englyst, J.H. Cummings, Am. J. Clin. Nutr. 42(5), 778–787 (1985). https://doi.org/10.1093/ajcn/42.5.778

    Article  CAS  PubMed  Google Scholar 

  20. M. Niu, G.G. Hou, J. Kindelspire, P. Krishnan, S. Zhao, Food Chem. 223, 16–24 (2017). https://doi.org/10.1016/j.foodchem.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  21. A. Guarda, C.M. Rosell, C. Benedito, M.J. Galotto, Food Hydrocolloids 18(2), 241–247 (2004). https://doi.org/10.1016/s0268-005x(03)00080-8

    Article  CAS  Google Scholar 

  22. Y. Wu, M. Niu, H.L. Xu, LWT-Food. Sci. Technol. 118, 108796 (2020). https://doi.org/10.1016/j.lwt.2019.108796

    Article  CAS  Google Scholar 

  23. N. Deng, Z. Deng, C. Tang et al., Trends Food Sci. Technol. 112, 667–675 (2021). https://doi.org/10.1016/j.tifs.2021.04.032

    Article  CAS  Google Scholar 

  24. J.-L. Doublier, L. Choplin, Carbohydr. Res. 193, 215–226 (1989). https://doi.org/10.1016/0008-6215(89)85120-1

    Article  CAS  Google Scholar 

  25. M. Gudmundsson, Thermochim. Acta 246(2), 329–341 (1994). https://doi.org/10.1016/0040-6031(94)80100-2

    Article  CAS  Google Scholar 

  26. H. Zhang, B. Sun, S. Zhang, Y. Zhu, Y. Tian, Carbohydr. Polym. 134, 413–417 (2015). https://doi.org/10.1016/j.carbpol.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  27. J. Wu, L. Li, X. Wu, Q. Dai, R. Zhang, Y. Zhang, J. Agric. Food Chem. 64(1), 310–319 (2016). https://doi.org/10.1021/acs.jafc.5b03948

    Article  CAS  PubMed  Google Scholar 

  28. W.X. Hu, J. Chen, J.W. Zhao, L. Chen, Y.H. Wang, Int. J. Biol. Macromol. 153, 26–35 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  29. J. Li, G.G. Hou, Z.X. Chen, A.L. Chung, K. Gehring, LWT-Food. Sci. Technol. 55(1), 43–50 (2014). https://doi.org/10.1016/j.lwt.2013.07.022

    Article  CAS  Google Scholar 

  30. P. Phuhongsung, M. Zhang, S. Devahastin, LWT-Food Sci Technol 122, 109019 (2020). https://doi.org/10.1016/j.lwt.2020.109019

    Article  CAS  Google Scholar 

  31. F. Zhu, Y.Z. Cai, M. Sun, H. Corke, Food Chem. 112(4), 919–923 (2009). https://doi.org/10.1016/j.foodchem.2008.06.079

    Article  CAS  Google Scholar 

  32. X. Wang, X. Leng, G. Zhang, Food Hydrocolloids 99, 105367 (2020). https://doi.org/10.1016/j.foodhyd.2019.105367

    Article  CAS  Google Scholar 

  33. L. Li, Y. Liu, Y. Xue, J. Zhu, X. Wang, Y. Dong, Chem. Cent. J. 11(1), 26 (2017). https://doi.org/10.1186/s13065-017-0254-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. F. Zhu, Trends Food Sci. Technol. 43(2), 129–143 (2015). https://doi.org/10.1016/j.tifs.2015.02.003

    Article  CAS  Google Scholar 

  35. Y. Zheng, J. Tian, X. Kong et al., LWT-Food Sci Technol 121(1), 108857 (2020). https://doi.org/10.1016/j.lwt.2019.108857

    Article  CAS  Google Scholar 

  36. Y. Chai, M. Wang, G. Zhang, J. Agric. Food Chem. 61(36), 8608–8615 (2013). https://doi.org/10.1021/jf402821r

    Article  CAS  PubMed  Google Scholar 

  37. N. Bordenave, B.R. Hamaker, M.G. Ferruzzi, Food Funct. 5(1), 18–34 (2014). https://doi.org/10.1039/c3fo60263j

    Article  CAS  PubMed  Google Scholar 

  38. J. Du, F. Yao, M. Zhang, I. Khalifa, K. Li, C. Li, Int. J. Biol. Macromol. 132, 1193–1199 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.046

    Article  CAS  PubMed  Google Scholar 

  39. L. Sun, F.J. Warren, M.J. Gidley, Trends Food Sci. Technol. 91, 262–273 (2019). https://doi.org/10.1016/j.tifs.2019.07.009

    Article  CAS  Google Scholar 

  40. C. Proenca, M. Freitas, D. Ribeiro et al., J. Enzym. Inhib. Med. Chem. 34(1), 577–588 (2019). https://doi.org/10.1080/14756366.2018.1558221

    Article  CAS  Google Scholar 

  41. M. Li, C. Pernell, M.G. Ferruzzi, Food Hydrocolloids 77, 843–852 (2018). https://doi.org/10.1016/j.foodhyd.2017.11.028

    Article  CAS  Google Scholar 

  42. L. Sun, M. Miao, Crit. Rev. Food Sci. Nutr. 60(4), 541–555 (2020). https://doi.org/10.1080/10408398.2018.1544883

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supported from the Natural science Innovation Fund Support Plan of Henan University of Technology (2020ZKCJ13) and National Key Research and Development Program of China (2016YFD04012021).

Author information

Authors and Affiliations

Authors

Contributions

Jing-Wen Zhao: Conceptualization, Writing—original draft, Writing—review & editing, Methodology, Formal analysis, Data curation, Software. Jie Chen: Funding acquisition, Project administration, Resources, Supervision. Wen-Xuan Hu: Data curation, Formal analysis, Software, Validation, Writing—original draft, Writing—review & editing. Ling Chen: Funding acquisition, Project administration, Resources. Fu-Sheng Chen: Funding acquisition, Resources.

Corresponding author

Correspondence to Jie-Chen.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Polyphenolic compounds differentially modulated storage quality of rice cake.

•Catechin exhibited strong inhibition in starch recrystallization of rice cake.

•Tea polyphenols efficiently reduced A22 and its change of rice cake in storage.

•Catechin markedly declined SDS but promoted RS of rice cake in storage.

•Storage stability of rice cake was improved by added polyphenolic compounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, JW., Jie-Chen, Hu, WX. et al. Effect of polyphenolic compounds on starch retrogradation and in vitro starch digestibility of rice cakes under different storage temperatures. Food Biophysics 17, 26–37 (2022). https://doi.org/10.1007/s11483-021-09701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09701-y

Keyword

Navigation