Skip to main content
Log in

Physicochemical and Antibacterial Properties of Sodium Tripolyphosphate/ε-Polylysine Complexes and their Application in Cooked Sausage

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study are to investigate the physicochemical and antibacterial properties of sodium tripolyphosphate (TPP)/ε-Polylysine(ε-PL) complexes. Their physicochemical properties were studied as a function of molar ratios by following changes in turbidity, particle size, and zeta potential. These results showed that the formation of stable and quest-stable complexes in aqueous solution was determined by the molar ratios. Moreover, Fourier Transform Infrared (FTIR) spectroscopy measurement demonstrated that the electrostatic force mainly dominated their complexation. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and molecular dynamics simulation demonstrated that ε-PL and TPP molecules interacted and bound together to form a stable complex. In vitro antibacterial activity against Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes, utilizing minimum inhibitory concentration (MIC), inhibition zone and time-kill assay, revealed that the antibacterial activity of R10 was the strongest. Furthermore, analogous bacterial membrane disruptions were observed in the treatments of complexes and ε-PL through scanning electron microscopy (SEM). In the application, cooked pork sausage was inoculated with the above-mentioned three-strain cocktails and stored at 12℃ for 6 days, cocktails’ total and individual colony counts were periodically monitored. Compared to other treatments, R10 behaved significantly different in all of the colony counts. Overall, this study confirmed that the antibacterial vehicle based on the TPP/ε-PL complex has a potential utilization in food application and pharmaceutics expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Xiang, Y. Yang, M. Dabbour, B.K. Mintah, H. Ma, Biochem Eng J. 162, 107720 (2020)

    Article  CAS  Google Scholar 

  2. I.L. Shih, M.H. Shen, Y.T. Van, Bioresource Technol. 97(9), 1148–1159 (2006)

    Article  CAS  Google Scholar 

  3. S. Shima, H. Matsuoka, T. Iwamoto, H. Sakai, J. Antibiot. 37(11), 1449–1455 (1984)

    Article  CAS  Google Scholar 

  4. I. Geornaras, Y. Yoon, K.E. Belk, G.C. Smith, J.N. Sofos, J. Food Sci. 72(8), M330-334 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. M. Hyldgaard, T. Mygind, B.S. Vad, M. Stenvang, D.E. Otzen, R.L. Meyer, Appl Environ Microb. 80(24), 7758–7770 (2014)

    Article  CAS  Google Scholar 

  6. D. Ciumac, H. Gong, X. Hu, J.R. Lu, J. Colloid Interf Sci. 537, 163–185 (2019)

    Article  CAS  Google Scholar 

  7. R. Karimirad, M. Behnamian, S. Dezhsetan, LWT Food Sci. Technol. 106, 218–228 (2019)

    Article  CAS  Google Scholar 

  8. C. Lopez-Pena, I.J. Arroyo-Maya, D.J. McClements, Food Hydrocolloid. 87, 352–359 (2019)

    Article  CAS  Google Scholar 

  9. L. Guo, Y.C. Meng, S. Fang, Food Function. 8(6), 2243–2248 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Z.P. Shao, S. Fang, Y.H. Li, J. Chen, Y.C. Meng, Int. J. Biol Macromol. 118(Pt B), 2208–2215 (2018) 

  11. Y. Chang, L. McLandsborough, D.J. McClements, J. Agric, Food Chem. 59(12), 6776–6782 (2011)

    Article  CAS  Google Scholar 

  12. Y. Chang, L. McLandsborough, D.J. McClements, Food Hydrocolloid 35, 137–143 (2014)

    Article  CAS  Google Scholar 

  13. Y. Chang, L. McLandsborough, D.J. McClements, Food Res. Int. 64, 396–401 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. S. Maiti, S. Jana, B. Laha, Design and Development of New Nanocarriers, ed. By A.M. Grumezescu (William Andrew Publishing, 2018), p. 223–256

  15. Y. Cai, Y. Lapitsky, Colloid Surface B. 115, 100–108 (2014)

    Article  CAS  Google Scholar 

  16. Q. Gan, T. Wang, C. Cochrane, P. McCarron, Colloid Surface B. 44(2–3), 65–73 (2005)

    Article  CAS  Google Scholar 

  17. R. Bodmeier, H.G. Chen, O. Paeratakul, Pharm Res-dordr. 6(5), 413–417 (1989)

    Article  CAS  Google Scholar 

  18. F. Razga, D. Vnukova, V. Nemethova, P. Mazancova, I. Lacik, Carbohyd Polym 151, 488–499 (2016)

    Article  CAS  Google Scholar 

  19. A. Moeini, A. Cimmino, G.D. Poggetto, M.D. Biase, A. Evidente, M. Masi, P. Lavermicocca, F. Valerio, A. Leone, G. Santagata, M. Malinconico, Carbohyd Polym 195, 631–641 (2018)

    Article  CAS  Google Scholar 

  20. N.C. Worstell, A. Singla, H.J. Wu, Colloid Surface B. 175, 84–90 (2019)

    Article  CAS  Google Scholar 

  21. S. Basak, P. Guha, LWT Food Sci. Technol. 75, 616–623 (2017)

    Article  CAS  Google Scholar 

  22. B. Lorber, F. Fischer, M. Bailly, H. Roy, D. Kern, Biochem Mol Biol Edu. 40(6), 372–382 (2012)

    Article  CAS  Google Scholar 

  23. K. Kaczmarska, B. Grabowska, T. Spychaj, M. Zdanowicz, M. Sitarz, A. Bobrowski, S. Cukrowicz, Spectrochim Acta A. 199, 387–393 (2018)

    Article  CAS  Google Scholar 

  24. J. Xu, Y. Li, C. Ren, W. Lan, Soils Found 60(4), 911–928 (2020)

    Article  Google Scholar 

  25. Z. Li, G.H. Ni, H. Wang, Q. Sun, G. Wang, B.Y. Jiang, C. Zhang, Fuel 272, 117705 (2020)

    Article  CAS  Google Scholar 

  26. J. Lee, X. Cheng, J.M. Swails, M.S. Yeom, P.K. Eastman, J.A. Lemkul, S. Wei, J. Buckner, J.C. Jeong, Y. Qi, J Chem Theory Compu. 12(1), 405–413 (2015)

    Article  CAS  Google Scholar 

  27. J. Liu, J. Xiao, F. Li, Y. Shi, D. Li, Q. Huang, Food Control 91, 302–310 (2018)

    Article  CAS  Google Scholar 

  28. L. Lin, Y. Gu, C. Li, S. Vittayapadung, H. Cui, Food Control 91, 76–84 (2018)

    Article  CAS  Google Scholar 

  29. J. Qian, Y.Y. Wang, H. Zhuang, W.J. Yan, J.H. Zhang, J. Luo, Food Chem. 351, 129278 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. D.O. Ukuku, B.A. Niemira, J. Ukanalis, LWT Food Sci. Technol. 104, 120–127 (2019)

    Article  CAS  Google Scholar 

  31. M.L. Pérez-Chabela, J. Díaz-Vela, C.V. Reyes-Menéndez, A. Totosaus, Int. J. Food Prop. 16(8), 1789–1808 (2013)

    Article  CAS  Google Scholar 

  32. S.S. Chang, W.Y. Lu, S.H. Park, D.H. Kang, Int. J. Food Microbiol. 141(3), 236–241 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Q. Ma, P.M. Davidson, Q. Zhong, Int. J. Food Microbiol. 226, 20–25 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. Y.P. D, Y.C. L, H.T, L, Z.T. L, Y. H, M.Z, T.L. W, Y.X. L, Y.B, D.B. P, Scientia Horticulturae, 283, 110091 (2021)

  35. K.N. Ryan, B. Vardhanabhuti, D.P. Jaramillo, J.H.V. Zanten, J.N. Coupland, E.A. Foegeding, Food Hydrocolloid. 27(2), 411–420 (2012)

    Article  CAS  Google Scholar 

  36. M. Gaber, M.T. Mabrouk, M.S. Freag, S.K. Khiste, J.Y. Fang, K.A. Elkhodairy, A.O. Elzoghby, Eur. J. Pharm Biopharm. 133, 42–62 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. L. Lin, Y. Zhu, H. Cui, LWT Food Sci. Technol. 97, 711–718 (2018)

    Article  CAS  Google Scholar 

  38. S. Maeda, K.K. Kunimoto, C. Sasaki, A. Kuwae, K. Hanai, J. Mol Struct. 655(1), 149–155 (2003)

    Article  CAS  Google Scholar 

  39. S. Rodrigues, A.M. da Costa, A. Grenha, Carbohyd Polym. 89(1), 282–289 (2012)

    Article  CAS  Google Scholar 

  40. J. Antoniou, F. Liu, H. Majeed, J. Qi, W. Yokoyama, F. Zhong, Colloid Surface A. 465, 137–146 (2014)

    Article  CAS  Google Scholar 

  41. T. Nicolai, D. Durand, Curr Opin Colloid In 18(4), 249–256 (2013)

    Article  CAS  Google Scholar 

  42. R. Ortega-Toro, G. Santagata, G. Gomez d’Ayala, P. Cerruti, P.T. Oliag, M.A.C. Boix, M. Malinconico, Carbohyd polym, 147, 16–17 (2016)

  43. T. Yoshida, T. Nagasawa, Appl Microbiol and Biot. 62(1), 21–26 (2003)

    Article  CAS  Google Scholar 

  44. M.N. Badaoui, D. Kashtanov, M.L. Chikindas, Lett Appl Microbiol. 45(1), 13–18 (2007)

    Article  CAS  Google Scholar 

  45. Y.T. Ho, S. Ishizaki, M. Tanaka, Food Chem. 68(4), 449–455 (2000)

    Article  CAS  Google Scholar 

  46. P. Borthakur, N. Hussain, G. Darabdhara, P.K. Boruah, B. Sharma, P. Borthakur, A. Yadav, M.R. Das, J. Environ Chem Eng. 6(4), 3933–3941 (2018)

    Article  CAS  Google Scholar 

  47. N.X. Dinh, D.T. Chi, N.T. Lan, H. Lan, H.V. Tuan, N.V. Quy, V.N. Phan, T.Q. Huy, A.T. Le, Appl Phys A-Mater. 119(1), 85–95 (2015)

    Article  CAS  Google Scholar 

  48. Z. Wu, W. Zhou, C. Pang, W. Deng, C. Xu, X. Wang, Food Chem. 295, 16–25 (2019)

    Article  CAS  PubMed  Google Scholar 

  49. T. Pulingam, K.L. Thong, M.E. Ali, J.N. Appaturi, I.J. Dinshaw, Z.O. Yuin, B.F. Leo, Colloid Surface B. 181, 6–15 (2019)

    Article  CAS  Google Scholar 

  50. S. Wydau-Dematteis, M. Louis, N. Zahr, R. Lai-Kuen, B. Saubamea, M.J. Butel, J.L. Pons, Anaerobe 35(Pt B), 105–114 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. M.R. Zahi, M.E. Hattab, H. Liang, Q. Yuan, Food Chem. 221, 18–23 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (31871830), the Key Research and Development Program of Zhejiang Province (2019C02088), the Natural Science Foundation of Zhejiang Province (LY18C200002), the Food Science and Engineering—the most important discipline of Zhejiang province (2017SIAR217), and the Zhejiang Xinmiao talent projects (2018R408059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12832 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., He, X., Guo, L. et al. Physicochemical and Antibacterial Properties of Sodium Tripolyphosphate/ε-Polylysine Complexes and their Application in Cooked Sausage. Food Biophysics 16, 415–425 (2021). https://doi.org/10.1007/s11483-021-09675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09675-x

Keywords

Navigation