Skip to main content
Log in

Hydrolysis by Indigenous Plasmin: Consequences for Enzymatic Cross-Linking and Acid-Induced Gel Formation of Non-Micellar Casein

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Casein is a group of milk proteins with high nutritional value, and the exploitation of its techno-functional potentials has been investigated for decades. In this study, acid casein powder was dissolved in 0.1 mol/L phosphate buffers with different pH, resulting in casein solutions with pH 5.9, 6.6 and 7.3. During preparation and storage (40 °C) of the samples, casein hydrolysis was observed in size exclusion chromatography and gel electrophoresis. The degree of hydrolysis increased with increasing pH, and treatment of casein with commercial plasmin resulted in similar polypeptides, suggesting that the hydrolysis was caused by residual indigenous plasmin present in the acid casein powder. Most polypeptides could be cross-linked by microbial transglutaminase, except for one particular fraction which appeared at constant intensity in the chromatograms. The stiffness of acid-induced gels as determined in small amplitude oscillatory shear rheology decreased with increasing degree of hydrolysis, and was also lower for cross-linked samples when the preceding casein hydrolysis was more pronounced. Enzymatic cross-linking increased the resistance of casein against plasmin-related hydrolysis, presumably because of the resulting lysine modification. However, one particular fraction of polypeptides was released by hydrolysis in spite of cross-linking, suggesting that they did not contain lysine residues that are susceptible for mTGase. The results indicate that plasmin-related hydrolysis should be taken into account for the application of acid casein or sodium caseinate as additive in food design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Please note: “0 h” refers to casein solutions to which mTGase was not added, thus the samples are the same as the “0 h” of sample set 1.

References

  1. A.L. Kelly, P.L.H. McSweeney, in Advanced Dairy Chemistry Volume 1: Proteins, 3rd edn., ed. by P. F. Fox, P. L. H. McSweeney. (Kluwer Academic/Plenum Publishers, New York, 2003), p. 495

    Chapter  Google Scholar 

  2. E.D. Bastian, R.J. Brown, Int. Dairy J. 6(5), 435–457 (1996). https://doi.org/10.1016/0958-6946(95)00021-6

    Article  CAS  Google Scholar 

  3. M. Stoeckel, M. Lidolt, T. Stressler, L. Fischer, M. Wenning, J. Hinrichs, Int. Dairy J. 61, 250–261 (2016). https://doi.org/10.1016/j.idairyj.2016.06.009

    Article  CAS  Google Scholar 

  4. B. Ismail, S.S. Nielsen, J. Dairy Sci. 93(11), 4999–5009 (2010). https://doi.org/10.3168/jds.2010-3122

    Article  PubMed  CAS  Google Scholar 

  5. R. Lu, C.D. Stevenson, S.E. Guck, L.A. Pillsbury, B. Ismail, K.D. Hayes, Int. J. Food Sci. Technol. 44(4), 681–687 (2009). https://doi.org/10.1111/j.1365-2621.2008.01808.x

    Article  CAS  Google Scholar 

  6. D.L. Schroeder, S.S. Nielsen, K.D. Hayes, Int. Dairy J. 18(2), 114–119 (2008). https://doi.org/10.1016/j.idairyj.2007.08.003

    Article  CAS  Google Scholar 

  7. C.N. Burbrink, K.D. Hayes, Int. Dairy J. 16(6), 580–585 (2006). https://doi.org/10.1016/j.idairyj.2005.08.017

    Article  CAS  Google Scholar 

  8. H.S. Rollema, S. Visser, J.K. Poll, Milchwissenschaft 38, 214 (1983)

    CAS  Google Scholar 

  9. I. Gazi, I.C. Vilalva, T. Huppertz, Int. Dairy J. 38(2), 208–212 (2014). https://doi.org/10.1016/j.idairyj.2013.11.012

    Article  CAS  Google Scholar 

  10. A. Crudden, A.L. Kelly, Int. Dairy J. 13(12), 987–993 (2003). https://doi.org/10.1016/S0958-6946(03)00140-7

    Article  CAS  Google Scholar 

  11. A.L. Kelly, F. O’Flaherty, P.F. Fox, Int. Dairy J. 16(6), 563–572 (2006). https://doi.org/10.1016/j.idairyj.2005.10.019

    Article  CAS  Google Scholar 

  12. J.E. Folk, P.W. Cole, J. Biol. Chem. 240, 2951 (1965)

    PubMed  CAS  Google Scholar 

  13. J.E. Folk, P.W. Cole, J. Biol. Chem. 241, 5518 (1966)

    PubMed  CAS  Google Scholar 

  14. N. Raak, L. Brehm, R.A. Abbate, T. Henle, A. Lederer, H. Rohm, D. Jaros, Food Biosci. 28, 89 (2019). doi:https://doi.org/10.1016/j.fbio.2019.01.16

  15. IDF, Caseins and caseinates – Determination of protein content (reference method) (IDF Standard, Brussels, 1979), p. 92

    Google Scholar 

  16. R.A. Abbate, N. Raak, S. Boye, A. Janke, H. Rohm, D. Jaros, A. Lederer, Food Hydrocoll. 92, 117–124 (2019). https://doi.org/10.1016/j.foodhyd.2019.01.043

    Article  CAS  Google Scholar 

  17. T. Huppertz, I. Gazi, H. Luyten, H. Nieuwenhuijse, A. Alting, E. Schokker, Int. Dairy J. 74, 1–11 (2017). https://doi.org/10.1016/j.idairyj.2017.03.006

    Article  CAS  Google Scholar 

  18. V.M. Rauh, M. Bakman, R. Ipsen, M. Paulsson, A.L. Kelly, L.B. Larsen, M. Hammershøj, Int. Dairy J. 38(1), 74–80 (2014). https://doi.org/10.1016/j.idairyj.2014.03.008

    Article  CAS  Google Scholar 

  19. J. Buchert, D. Ercili Cura, H. Ma, C. Gasparetti, E. Monogioudi, G. Faccio, M. Mattinen, H. Boer, R. Partanen, E. Selinheimo, R. Lantto, K. Kruus, Annu. Rev. Food Sci. Technol. 1(1), 113–138 (2010). https://doi.org/10.1146/annurev.food.080708.100841

    Article  PubMed  CAS  Google Scholar 

  20. D. Jaros, C. Partschefeld, T. Henle, H. Rohm, J. Texture Stud. 37(2), 113–155 (2006). https://doi.org/10.1111/j.1745-4603.2006.00042.x

    Article  Google Scholar 

  21. T. Henle, H. Walter, H. Klostermeyer, Z. Lebensm. Unters. For. 193(2), 119–122 (1991). https://doi.org/10.1007/BF01193359

    Article  CAS  Google Scholar 

  22. S. Lauber, T. Henle, H. Klostermeyer, Eur. Food Res.Technol. 210(5), 305–309 (2000). https://doi.org/10.1007/s002170050554

    Article  CAS  Google Scholar 

  23. N. Raak, H. Rohm, D. Jaros, Int. Dairy J. 66, 49–55 (2017). https://doi.org/10.1016/j.idairyj.2016.10.015

    Article  CAS  Google Scholar 

  24. N. Raak, R.A. Abbate, A. Lederer, H. Rohm, D. Jaros, Separations 5(1), 14 (2018). https://doi.org/10.3390/separations5010014

    Article  CAS  Google Scholar 

  25. A. Crudden, J.C. Oliveira, A.L. Kelly, J. Dairy Res. 72(4), 493–504 (2005). https://doi.org/10.1017/S0022029905001421

    Article  PubMed  CAS  Google Scholar 

  26. A. Crudden, J.C. Oliveira, A.L. Kelly, Int. Dairy J. 15(12), 1245–1253 (2005). https://doi.org/10.1016/j.idairyj.2004.12.010

    Article  CAS  Google Scholar 

  27. T. Saint Denis, G. Humbert, J.-L. Gaillard, Lait 81(6), 715–729 (2001). https://doi.org/10.1051/lait:2001159

    Article  CAS  Google Scholar 

  28. A.A.M. Metwalli, H.H.J. de Jongh, M.A.J.S. van Boekel, Int. Dairy J. 8(1), 47–56 (1998). https://doi.org/10.1016/S0958-6946(98)00017-X

    Article  CAS  Google Scholar 

  29. W.N. Eigel, C.J. Hofmann, B.A.K. Chibber, J.M. Tomich, T.W. Keenan, E.T. Mertz, Proc. Natl. Acad. Sci. U. S. A. 76(5), 2244–2248 (1979). https://doi.org/10.1073/pnas.76.5.2244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. M.E. Hidalgo, D.J. Daroit, A.P. Folmer Corrêa, S. Pieniz, A. Brandelli, P.H. Risso, Int. J. Dairy Technol. 65(3), 342–352 (2012). https://doi.org/10.1111/j.1471-0307.2011.00752.x

    Article  CAS  Google Scholar 

  31. M.E. Hidalgo, A.P. Folmer Côrrea, M. Mancilla Canales, D. Joner Daroit, A. Brandelli, P. Risso, Food Hydrocoll. 43, 510–520 (2015). https://doi.org/10.1016/j.foodhyd.2014.07.009

    Article  CAS  Google Scholar 

  32. D. Ercili Cura, R. Lantto, M. Lille, M. Andberg, K. Kruus, J. Buchert, Int. Dairy J. 19(12), 737–745 (2009). https://doi.org/10.1016/j.idairyj.2009.06.007

    Article  CAS  Google Scholar 

  33. L.E. Belyakova, A.S. Antipova, M.G. Semenova, E. Dickinson, L. Matia Merino, E.N. Tsapkina, Coll. Surf. B 31(1-4), 31–46 (2003). https://doi.org/10.1016/S0927-7765(03)00041-9

    Article  CAS  Google Scholar 

  34. N. Raak, C. Schöne, H. Rohm, D. Jaros, Food Hydrocoll. 86, 43–49 (2019). https://doi.org/10.1016/j.foodhyd.2018.01.037

    Article  CAS  Google Scholar 

  35. H. Ando, M. Adachi, K. Umeda, A. Matsuura, M. Nonaka, R. Uchio, H. Tanaka, M. Motoki, Agric. Biol. Chem. 53(10), 2613–2617 (1989). https://doi.org/10.1080/00021369.1989.10869735

    Article  CAS  Google Scholar 

  36. L. Zhang, L. Zhang, H. Yi, M. Du, C. Ma, X. Han, Z. Feng, Y. Jiao, Y. Zhang, J. Dairy Sci. 95(7), 3559–3568 (2012). https://doi.org/10.3168/jds.2011-5125

    Article  PubMed  CAS  Google Scholar 

  37. M. Jin, J. Huang, Z. Pei, J. Huang, H. Gao, Z. Chang, J. Mol. Catal. B 133, 6–11 (2016). https://doi.org/10.1016/j.molcatb.2016.07.005

    Article  CAS  Google Scholar 

  38. A.S. Eissa, S. Bisram, S.A. Khan, J. Agric. Food Chem. 52(14), 4456–4464 (2004). https://doi.org/10.1021/jf0355304

    Article  PubMed  CAS  Google Scholar 

  39. S. Damodaran, Y. Li, Food Chem. 237, 724–732 (2017). https://doi.org/10.1016/j.foodchem.2017.05.152

    Article  PubMed  CAS  Google Scholar 

  40. B.M. Christensen, E.S. Sørensen, P. Højrup, T.E. Petersen, L.K. Rasmussen, J. Agric. Food Chem. 44(7), 1943–1947 (1996). https://doi.org/10.1021/jf9602131

    Article  CAS  Google Scholar 

  41. C. Partschefeld, Enzymatisch vernetzte Milchproteine: Reaktionsorde und funktionelle Konsequenzen. Doctoral thesis, Technische Universität Dresden, Dresden, Germany (2011). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-84064. Accessed 17 May 2019

  42. D. Jaros, M. Jacob, C. Otto, H. Rohm, Int. Dairy J. 20(5), 321–327 (2010). https://doi.org/10.1016/j.idairyj.2009.11.021

    Article  CAS  Google Scholar 

  43. D. Jaros, U. Schwarzenbolz, N. Raak, J. Löbner, T. Henle, H. Rohm, Int. Dairy J. 38(2), 174–178 (2014). https://doi.org/10.1016/j.idairyj.2013.10.011

    Article  CAS  Google Scholar 

  44. H. Rohm, F. Ullrich, C. Schmidt, J. Löbner, D. Jaros, J. Texture Stud. 45(2), 130–137 (2014). https://doi.org/10.1111/jtxs.12056

    Article  Google Scholar 

  45. A. HadjSadok, A. Pitkowski, T. Nicolai, L. Benyahia, N. Moulai-Mostefa, Food Hydrocoll. 22(8), 1460–1466 (2008). https://doi.org/10.1016/j.foodhyd.2007.09.002

    Article  CAS  Google Scholar 

  46. H. Bhatt, A. Cucheval, C. Coker, H. Patel, A. Carr, R. Bennett, Int. Dairy J. 38(2), 213–218 (2014). https://doi.org/10.1016/j.idairyj.2014.01.017

    Article  CAS  Google Scholar 

  47. H. Bhatt, A. Cucheval, C. Coker, H. Patel, A. Carr, R. Bennett, Int. Dairy J. 75, 75–82 (2017). https://doi.org/10.1016/j.idairyj.2017.07.009

    Article  CAS  Google Scholar 

  48. M.M. O’Sullivan, A.L. Kelly, P.F. Fox, J. Dairy Res. 69(3), 433–442 (2002). https://doi.org/10.1017/S0022029902005617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was received from Deutsche Forschungsgemeinschaft (Bonn, Germany) under the grant number RO3454/5-1. Microbial transglutaminase was kindly provided by Ajinomoto Foods Europe SAS (Hamburg, Germany), and glucono-δ-lactone by Kampffmeyer Nachf. GmbH (Ratzeburg, Germany). A special thanks goes to Mrs. Karla Schlosser for determining the isopeptide contents of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Raak.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raak, N., Brehm, L., Leidner, R. et al. Hydrolysis by Indigenous Plasmin: Consequences for Enzymatic Cross-Linking and Acid-Induced Gel Formation of Non-Micellar Casein. Food Biophysics 15, 32–41 (2020). https://doi.org/10.1007/s11483-019-09601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09601-2

Keywords

Navigation