Skip to main content
Log in

Emulsifier Dependent in vitro Digestion and Bioaccessibility of β-Carotene Loaded in Oil-in-Water Emulsions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study was performed to examine the effect of emulsifiers used to coat emulsion droplets containing β-carotene on the behavior of lipid digestion and bioaccessibility. Different emulsifiers (whey protein isolate, soy protein isolate, sodium caseinate, Tween 20, and soy lecithin) were used to prepare emulsions with similar sized droplets (200–400 nm). Protein-stabilized emulsions showed a similar behavior of digestion, and morphological change in the simulated gastrointestinal conditions. Soy lecithin-stabilized emulsions showed the lowest rate and extent of lipid digestion probably due to the low emulsifying capability of soy lecithin, showing coalesced droplets occurring after exposure to the gastric phase. Tween 20-stabilized emulsions had a lower rate and extent of lipid digestion than that of protein-stabilized emulsions, even though Tween 20-stabilized emulsions had a more stable structure to resistant to aggregation in gastric phase. Even though the difference in the digestion rate and extent, β-carotene bioaccessibility was not significantly different among emulsions stabilized by different emulsifiers at p < 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.L. Tang, J. Sun, Z.G. He, Curr. Drug Ther. 2, 85 (2007)

    Article  CAS  Google Scholar 

  2. R. Liang, C.F. Shoemaker, X. Yang, F. Zhong, Q. Huang, J. Agr. Food Chem. 61, 1249 (2013)

    Article  CAS  Google Scholar 

  3. D.J. McClements, Expert Opin. Drug Deliv. 10, 1621 (2013)

    Article  CAS  Google Scholar 

  4. E. Reboul, Nutrients 5, 3563 (2013)

    Article  Google Scholar 

  5. I.J. Joye, D.J. McClements, Curr. Opin. Colloid In. 19, 417 (2014)

    Article  CAS  Google Scholar 

  6. A. Maltais, G.E. Remondetto, M. Subirade, Food Hydrocoll. 23, 1647 (2009)

    Article  CAS  Google Scholar 

  7. D.J. McClements, Y. Li, Adv. Colloid Interfac. Sci. 159, 213 (2010)

    Article  CAS  Google Scholar 

  8. Z. Hou, Y. Liu, F. Lei, Y. Gao, LWT-Food Sci. Technol. 59, 867 (2014)

    Article  CAS  Google Scholar 

  9. L. Mao, S. Miao, Food Eng. Rev. 7, 439 (2015)

    Article  CAS  Google Scholar 

  10. R. Zhang, Z. Zhang, H. Zhang, E.A. Decker, D.J. McClements, Food Hydrocoll. 45, 175 (2015)

    Article  CAS  Google Scholar 

  11. S.J. Hur, E.A. Decker, D.J. McClements, Food Chem. 114, 253 (2009)

    Article  CAS  Google Scholar 

  12. J. Yi, Y. Li, F. Zhong, W. Yokoyama, Food Hydrocoll. 35, 19 (2014)

    Article  CAS  Google Scholar 

  13. C. Qiu, M. Zhao, E.A. Decker, D.J. McClements, Food Chem. 175, 249 (2015)

    Article  CAS  Google Scholar 

  14. T.L. Salvia, C. Qian, B.O. Martín, D.J. McClements, Food Chem. 139, 878 (2013)

    Article  Google Scholar 

  15. T.L. Salvia, C. Qian, B.O. Martín, D.J. McClements, Food Chem. 141, 1472 (2013)

    Article  Google Scholar 

  16. S.H. Mun, Y.R. Kim, D.J. McClements, Food Chem. 173, 454 (2015)

    Article  CAS  Google Scholar 

  17. C.L. Lopez-Pena, B. Zheng, D.A. Sela, E.A. Decker, H. Xiao, D.J. McClements, Food Chem. 192, 857 (2016)

    Article  CAS  Google Scholar 

  18. A. Sarkar, K.K.T. Goh, H. Singh, Food Hydrocoll. 23, 1270 (2009)

    Article  CAS  Google Scholar 

  19. C. Qian, E.A. Decker, H. Xiao, D.J. McClements, Food Chem. 135, 1440 (2012)

    Article  CAS  Google Scholar 

  20. E. Troncoso, J.M. Aguilera, D.J. McClements, J. Colloid Interf. Sci. 382, 110 (2012)

    Article  CAS  Google Scholar 

  21. D.J. McClements, Food emulsions: Principles, practices and techniques (CRC Press, Boca Raton, 2005)

    Google Scholar 

  22. L. Chen, J. Chen, J. Ren, M. Zhao, Food Hydrocoll. 25, 887 (2011)

    Article  CAS  Google Scholar 

  23. C.H. Tang, X.R. Li, Food Res. Int. 52, 419 (2013)

    Article  CAS  Google Scholar 

  24. E. Silletti, M.H. Vingerhoeds, W. Norde, G.A. van Aken, Food Hydrocoll. 21, 596 (2007)

    Article  CAS  Google Scholar 

  25. J. Li, A. Ye, S.J. Lee, H. Singh, Colloid Surf. B. 111, 80 (2013)

    Article  CAS  Google Scholar 

  26. C. Yucel, V. Quagliariello, R.V. Iaffaioli, G. Ferrari, F. Donsì, Int. J. Pharm. 494, 357 (2015)

    Article  CAS  Google Scholar 

  27. H. Singh, A.Q. Ye, D. Horne, Prog. Lipid Res. 48, 92 (2009)

    Article  CAS  Google Scholar 

  28. C.H. Tang, Crit. Rev. Food Sci. Nutr. 57, 2636 (2017)

    Article  CAS  Google Scholar 

  29. S. Damodaran, J. Food Sci. 70, R54 (2005)

    Article  CAS  Google Scholar 

  30. G.A. Van Aken, E. Bomhof, F.D. Zoet, M. Verbeek, A. Oosterveld, Food Hydrocoll. 25, 781 (2011)

    Article  Google Scholar 

  31. S.H. Mun, Y.R. Kim, M.S. Shin, D.J. McClements, Food Hydrocoll. 44, 380 (2015)

    Article  CAS  Google Scholar 

  32. S.H. Mun, E.A. Decker, D.J. McClements, Food Res. Int. 40, 770 (2007)

    Article  CAS  Google Scholar 

  33. H. Singh, A. Sarkar, Adv. Colloid Interfac. Sci. 165, 47 (2011)

    Article  CAS  Google Scholar 

  34. Y. Chang, D.J. McClements, Food Hydrocoll. 61, 92 (2016)

    Article  CAS  Google Scholar 

  35. G.A. Torcello, V.J. Maldonado, R.A. Martín, D.J. McClements, Soft Matter 7, 6167 (2011)

    Article  Google Scholar 

  36. J.Ø. Christensen, K. Schultz, B. Mollgaard, H.G. Kristensen, A. Mullertz, Eur. J. Pharm. Sci. 23, 287 (2004)

    Article  CAS  Google Scholar 

  37. T.A.J. Verrijssen, K.H.G. Smeets, S. Christiaens, S. Palmers, A.M. Van Loey, M.E. Hendrickx, Food Res. Int. 67, 60 (2015)

    Article  CAS  Google Scholar 

  38. A. Tapal, P.K. Tiku, Food Chem. 130, 960 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT, and Future Planning (NRF-2015R1A1A3A04001485). This work was also partly supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA), Republic of Korea (Project No. 315065-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saehun Mun or Yong-Ro Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Mun, S. & Kim, YR. Emulsifier Dependent in vitro Digestion and Bioaccessibility of β-Carotene Loaded in Oil-in-Water Emulsions. Food Biophysics 13, 147–154 (2018). https://doi.org/10.1007/s11483-018-9520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9520-0

Keywords

Navigation