Skip to main content
Log in

The Synergistic Antibacterial Properties of Glycinin Basic Peptide against Bacteria via Membrane Damage and Inactivation of Enzymes

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study investigated the antibacterial properties of glycinin basic peptide (GBP), a natural antibacterial component from soybean protein, against Staphylococcus aureus (S. aureus). The minimum inhibitory and bactericidal concentrations of GBP against S. aureus were 0.2 mg/mL and 0.8 mg/mL, respectively. Flow cytometry analysis manifested that GBP decreased the number of intact and normal cells. Higher concentrations of GBP induced more severe damage of the bacterial membrane; the maximal percentage of injured and dead cells was 93.8% with 0.8 mg/mL GBP. Electron microscopy imaging visually showed the morphological damage of S. aureus by GBP. Intracellular K+ leakage and the membrane depolarization of S. aureus further verified that GBP could destroy the bacterial membrane. Moreover, GBP decreased the activity of nonspecific esterase and ATPase of S. aureus in a concentration-dependent manner. These results demonstrated that GBP exhibited antibacterial properties against S. aureus via synergistic actions of damage to the cell membrane and inactivation of metabolic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.M. Rossi, Publications from international organizations on public health. Ann. Ist. Super. Sanita 102(11), 324–326 (2014)

    Google Scholar 

  2. G. Li, S. Wu, W. Luo, Y. Su, Y. Luan, X. Wang, Staphylococcus aureus ST6-t701 isolates from food-poisoning outbreaks (2006-2013) in Xi'an, China. Foodborne Pathog. Dis. 12(3), 203–206 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. E. Scallan, R.M. Hoekstra, F.J. Angulo, R.V. Tauxe, M.A. Widdowson, S.L. Roy, J.L. Jones, P.M. Griffin, Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 17(1), 7–15 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  4. P. Chaibenjawong, S.J. Foster, Desiccation tolerance in Staphylococcus aureus. Arch. Microbiol. 193(2), 125–135 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. A.E. Waters, T. Contentecuomo, J. Buchhagen, C.M. Liu, L. Watson, K. Pearce, J.T. Foster, J. Bowers, E.M. Driebe, D.M. Engelthaler, Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 52(10), 1227–1230 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. Schmitt, U. Schuler-Schmid, W. Schmidt-Lorenz, Temperature limits of growth, TNase and enterotoxin production of Staphylococcus aureus strains isolated from foods. Int. J. Food Microbiol. 11(1), 1–19 (1990)

    Article  CAS  PubMed  Google Scholar 

  7. G.L. Archer, Staphylococcus aureus: A well-armed pathogen. Clin. Infect. Dis. 26(5), 1179–1181 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. L.Y. Le, F. Baron, M. Gautier, Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2(1), 63–76 (2003)

    Google Scholar 

  9. M.A. Argudin, M.C. Mendoza, M.R. Rodicio, Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2(7), 1751–1773 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. W. Yuan, H.G. Yuk, Antimicrobial efficacy of Syzygium antisepticum plant extract against Staphylococcus aureus and methicillin-resistant S. aureus and its application potential with cooked chicken. Food Microbiol. 72, 176–184 (2018)

    Article  PubMed  Google Scholar 

  11. P. Dehghan, A. Mohammadi, H. Mohammadzadeh-Aghdash, J. Ezzati Nazhad Dolatabadi, Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends Food Sci. Technol. 80, 123–130 (2018)

    Article  CAS  Google Scholar 

  12. D. Majou, S. Christieans, Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 145, 273–284 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. S. Christiansen, Possible endocrine disrupting effects of parabens and their metabolites. Reprod. Toxicol. 30(2), 301–312 (2010)

    Article  PubMed  CAS  Google Scholar 

  14. S. Mamur, D. Yuzbasioglu, F. Unal, S. Yilmaz, Does potassium sorbate induce genotoxic or mutagenic effects in lymphocytes? Toxicol. in Vitro 24(3), 790–794 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. S. Khanna, P.R. Dash, P.D. Darbre, Exposure to parabens at the concentration of maximal proliferative response increases migratory and invasive activity of human breast cancer cells in vitro. J. Appl. Toxicol. 34(9), 1051–1059 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. W. Bedale, J.J. Sindelar, A.L. Milkowski, Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 120, 85–92 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. S. Subramaniam, N. Rajendran, S.B. Muralidharan, G. Subramaniam, R. Raju, A. Sivasubramanian, Dual role of select plant based nutraceuticals as antimicrobial agents to mitigate food borne pathogens and as food preservatives. RSC Adv. 5(94), 77168–77174 (2015)

    Article  CAS  Google Scholar 

  18. S. Hu, H. Liu, S. Qiao, P. He, X. Ma, W. Lu, Development of immunoaffinity chromatographic method for isolating glycinin (11S) from soybean proteins. J. Agric. Food Chem. 61(18), 4406–4410 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. D.B. Yuan, X.Q. Yang, C.H. Tang, Z.X. Zheng, A. WeiMin, S.W.Y. Ijaz, Physicochemical and functional properties of acidic and basic polypeptides of soy glycinin. Food Res. Int. 42(5), 700–706 (2009)

    Article  CAS  Google Scholar 

  20. Y.Q. Li, X.X. Sun, J.L. Feng, H.Z. Mo, Antibacterial activities and membrane permeability actions of glycinin basic peptide against Escherichia coli. Innovative Food Sci. Emerg. Technol. 31, 170–176 (2015)

    Article  CAS  Google Scholar 

  21. J. Hou, Y.Q. Li, Z.S. Wang, G.J. Sun, H.Z. Mo, Applicative effect of glycinin basic polypeptide in fresh wet noodles and antifungal characteristics. LWT-food. Sci. Technol. 83(15), 267–274 (2017)

    CAS  Google Scholar 

  22. G.P. Zhao, Y.Q. Li, G.J. Sun, H.Z. Mo, Antibacterial actions of glycinin basic peptide against Escherichia coli. J. Agric. Food Chem. 65(25), 5173–5180 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. Y.Q. Li, M. Hao, J. Yang, H.Z. Mo, Effects of glycinin basic polypeptide on sensory and physicochemical properties of chilled pork. Food Sci. Biotechnol. 25(3), 803–809 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Clinical and Laboratory Standards Institute (CLSI), M100 Performance standards for antimicrobial susceptibility testing, 28th edition. M07-Ed11. Wayne, PA: Clinical and Laboratory Standards Institute (2018)

  25. C.B. Correa, C.B. Correa, J.G.P. Martin, E. Porto, S.M. Alencar, Antilisterial activity of broccoli stems (brassica oleracea) by flow cytometry. Int. Food Res. J. 24(1), 395–399 (2014)

    Google Scholar 

  26. J.R. Loewenberg, Cyanide and the determination of protein with the Folin phenol reagent. Anal. Biochem. 19(1), 95–97 (1967)

    Article  CAS  PubMed  Google Scholar 

  27. B.H. Liu, T.S. Wu, M.C. Su, C.P. Chung, F.Y. Yu, Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J. Agric. Food Chem. 53(1), 170–175 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. R.G. Combarros, S. Collado, M. Diaz, Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. J. Hazard. Mater. 310, 246–252 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. A. Paparella, L. Taccogna, I. Aguzzi, C. Chaves-Lopez, A. Serio, F. Marsilio, G. Suzzi, Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control 19(12), 1174–1182 (2008)

    Article  CAS  Google Scholar 

  30. F. Liu, F. Wang, L. Du, T. Zhao, M.P. Doyle, D. Wang, X. Zhang, Z. Sun, W. Xu, Antibacterial and antibiofilm activity of phenyllactic acid against Enterobacter cloacae. Food Control 84, 442–448 (2018)

    Article  CAS  Google Scholar 

  31. J. Tian, Y. Wang, Z. Lu, C. Sun, Z. Man, A. Zhu, P. Xue, Perillaldehyde, a promising antifungal agent used in food preservation, triggers apoptosis through a metacaspase-dependent pathway in Aspergillus flavus. J. Agric. Food Chem. 64(39), 7404–7413 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. C. Hyemin, H. Jae-Sam, L.D. Gun, Antifungal effect and pore-forming action of lactoferricin b like peptide derived from centipede scolopendra subspinipes mutilans. Biochim. Biophys. Acta 1828(11), 2745–2750 (2013)

    Article  CAS  Google Scholar 

  33. M.Z. Sitohy, S.A. Mahgoub, A.O. Osman, In vitro and in situ antimicrobial action and mechanism of glycinin and its basic subunit. Int. J. Food Microbiol. 154(1–2), 19–29 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. S. Shabala, L. Shabala, Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts. 2(5), 407–419 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. J. Miao, J. Zhou, G. Liu, F. Chen, Y. Chen, X. Gao, W. Dixon, M. Song, H. Xiao, Y. Cao, Membrane disruption and DNA binding of Staphylococcus aureus, cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei, subsp. tolerans, FX-6. Food Control 59, 609–613 (2016)

    Article  CAS  Google Scholar 

  36. T. Hada, Y. Inoue, A. Shiraishi, H. Hamashima, Leakage of K+ ions from Staphylococcus aureus in response to tea tree oil. J. Microbiol. Methods 53(3), 309–312 (2003)

    Article  CAS  PubMed  Google Scholar 

  37. W. Shen, P. Li, H. Feng, Y. Ge, Z. Liu, L. Feng, The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles. Mater. Sci. Eng. C. 75(1), 610–619 (2017)

    Article  CAS  Google Scholar 

  38. R. Petruzzelli, M.E. Clementi, S. Marini, M. Coletta, E.D. Stasio, B. Giardina, F. Misiti, Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5. Biochem. Biophys. Res. Commun. 311(4), 1034–1040 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Lv, Z. Niu, Y. Chen, Y. Hu, Bacterial effects and interfacial inactivation mechanism of nzvi/pd on pseudomonas putida strain. Water Res. 115, 297–308 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. S.P. Chakraborty, S.K. Sahu, P. Pramanik, S. Roy, In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus. Int. J. Pharm. 436(1–2), 659–676 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. D. Xi, X. Wang, D. Teng, R. Mao, Y. Zhang, X. Wang, J. Wang, Mechanism of action of the tri-hybrid antimicrobial peptide LHP7 from lactoferricin, HP and plectasin on Staphylococcus aureus. Biometals 27(5), 957–968 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. J. Hong, W. Guan, G. Jin, H. Zhao, X. Jiang, J. Dai, Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry. Microbiol. Res. 170, 69–77 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. A.S. Chakotiya, A. Tanwar, A. Narula, R.K. Sharma, Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb. Pathogenesis. 107, 254–260 (2017)

    Article  CAS  Google Scholar 

  44. A. Sharma, S. Srivastava, Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol. 118(2), 264–275 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. J.I. Sudo, J. Terui, H. Iwase, K. Kakuno, Assay of ATPase and Na, K-ATPase activity using high-performance liquid chromatographic determination of ADP derived from ATP. J. Chromatogr. B Biomed. Sci. Appl. 744(1), 19–23 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. J.H. Kaplan, Biochemistry of Na, K-ATPase. Annu. Rev. Biochem. 71(1), 511–535 (2002)

    Article  CAS  PubMed  Google Scholar 

  47. P. Santos, A. Gordillo, L. Osses, L.M. Salazar, C.Y. Soto, Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 36(1), 121–128 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. S. Chingate, G. Delgado, L.M. Salazar, C.Y. Soto, The ATPase activity of the mycobacterial plasma membrane is inhibited by the LL37-analogous peptide LLAP. Peptides 71, 222–228 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. E. Rico-Munoz, E.E. Bargiota, P.M. Davidson, Effect of selected phenolic compounds on the membrane-bound adenosine triphosphatase of Staphylococcus aureus. Food Microbiol. 4(3), 239–249 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the National Natural Science Foundation of China (31371839), Funds of Shandong “Double Tops” Program (SYT2017XTTD04), A Project of Shandong Province Higher Educational Science and Technology Program (J18KA154), and the 2017-year Support Program for Introduction of Urgently Needed Talents in Western Economic Upwarping Zone and Poverty-alleviation-exploitation Key Area in Shandong Province, as well as the Program for Science and Technology Innovation Team in Universities of Henan Province (16IRTSTHN007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Qiu Li or Zhao Sheng Wang.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, H.Q., Li, Y.Q., Wang, Z.S. et al. The Synergistic Antibacterial Properties of Glycinin Basic Peptide against Bacteria via Membrane Damage and Inactivation of Enzymes. Food Biophysics 14, 132–141 (2019). https://doi.org/10.1007/s11483-018-09564-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-09564-w

Keywords

Navigation