Skip to main content
Log in

Influence of the Volume Fraction, Size and Surface Coating of Hard Spheres on the Microstructure and Rheological Properties of Model Mozzarella Cheese

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study investigated the influence of model filler particles (glass beads) on the microstructure and rheological properties of Mozzarella cheese. Model Mozzarella cheese composites with increasing volume fractions of glass beads of various sizes and surface properties were processed in a Rapid Visco Analyser (RVA). Confocal laser scanning microscope images showed that all the hard spheres were dispersed in the protein phase, rather than in the fat phase. Dynamic oscillatory rheology revealed that the volume fraction of the glass beads had a major influence on the complex modulus (G*) of the cheese composites, whereas the size and the coating of the glass beads had no influence. However, the zero shear viscosity (η 0), measured using the creep-compliance test, was affected by both the size and the volume fraction of the glass beads. This indicated that there were some interactions between the glass beads and the cheese matrix. Filler–matrix interactions played a major role in the fracture properties of the cheese composites. The fracture stress (σ f ) was highly dependent on the coating and the size of the glass beads. Simple equations for filled gels from the literature fitted well with the experimental results and could be successfully applied for future predictions. According to this study, the transfer of knowledge from filled polymer composites to model cheese appears relevant. This can provide a good basis for designing new dairy product structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. H. Tunick, K. L. Mackey, P. W. Smith, V. H. Holsinger, Neth. Milk Dairy J. 45, 117–125 (1991)

    Google Scholar 

  2. R. K. Bhaskaracharya, N. P. Shah, Aus. J. Dairy Technol. 57, 9–14 (2001)

    Google Scholar 

  3. D. J. McMahon, M. C. Alleyne, R. L. Fife, C. J. Oberg, J. Dairy Sci. 79, 1911–1921 (1996)

    Article  CAS  Google Scholar 

  4. B. Zisu, N. P. Shah, Int. Dairy J. 15, 957–972 (2005)

    Article  CAS  Google Scholar 

  5. L. M. Barden, J. A. Osborne, D. J. McMahon, E. A. Foegeding, J. Dairy Sci. 98, 1502–1516 (2015)

    Article  CAS  Google Scholar 

  6. T. L. Smith, Trans. Soc. Rheol. 3(1), 113–136 (1959)

    Article  CAS  Google Scholar 

  7. Y. S. Thio, A. S. Argon, R. E. Cohen, Polymer 45, 3139–3147 (2004)

    Article  CAS  Google Scholar 

  8. J. M. Manski, I. M. J. Kretzers, S. van Brenk, A. J. van der Goot, R. M. Boom, Food Hydrocolloid. 21, 73–84 (2007)

    Article  CAS  Google Scholar 

  9. R. Pal, J. Colloid Interf, Sci. 245, 171–177 (2002)

    CAS  Google Scholar 

  10. S. B. Ross-Murphy, S. Todd, Polymer 24, 481–486 (1983)

    Article  CAS  Google Scholar 

  11. K. R. Langley, M. L. Green, J. Texture Stud. 20, 191–207 (1989)

    Article  Google Scholar 

  12. A. J. Gravelle, S. Barbut, A. G. Marangoni, RSC Adv. 5, 60723–60735 (2015)

    Article  CAS  Google Scholar 

  13. D. W. Everett, M. A. E. Auty, Int. Dairy J. 18, 759–773 (2008)

    Article  CAS  Google Scholar 

  14. R. Kapoor, L. E. Metzger, J. Dairy Sci. 88, 3382–3391 (2005)

    Article  CAS  Google Scholar 

  15. S. Gunasekaran, M. M. Ak, Cheese rheology and texture (CRC Press, Boca Raton, FL, 2003)

    Google Scholar 

  16. T. G. Mezger, The rheology handbook, 3rd edn. (Vincentz Network, Hanover, 2011)

    Google Scholar 

  17. M. L. Olivares, S. E. Zorrilla, A. C. Rubiolo, J. Texture Stud. 40, 300–318 (2009)

    Article  Google Scholar 

  18. P. Watkinson, G. Boston, O. Campanella, C. Coker, K. Johnston, M. Luckman, N. White, Lait 77, 109–120 (1997)

    Article  CAS  Google Scholar 

  19. D. J. McMahon, R. L. Fife, C. J. Oberg, J. Dairy Sci. 82, 1361–1369 (1999)

    Article  CAS  Google Scholar 

  20. G. Sala, T. van Vliet, M. Cohen Stuart, F. van de Velde, G. A. van Aken, Food Hydrocolloid. 23, 1853–1863 (2009)

    Article  CAS  Google Scholar 

  21. G. J. Brownsey, H. S. Ellis, M. J. Ridout, S. G. Ring, J. Rheol. 31, 635–649 (1987)

    Article  CAS  Google Scholar 

  22. K. H. Kim, J. M. S. Renkema, T. van Vliet, Food Hydrocolloid. 15, 295–302 (2001)

    Article  CAS  Google Scholar 

  23. C. K. Reiffers-Magnani, J. L. Cuq, H. J. Watzke, Food Hydrocolloid. 13, 303–316 (1999)

    Article  Google Scholar 

  24. D. B. Genovese, Adv. Colloid Interf. Sci. 171–172, 1–16 (2012)

    Article  Google Scholar 

  25. H. Eilers, Kolloid Z. 97, 313–321 (1941)

    Article  CAS  Google Scholar 

  26. I. M. Krieger, T. J. Dougherty, Trans. Soc. Rheol. 3(1), 137–152 (1959)

    Article  CAS  Google Scholar 

  27. M. Mooney, J. Colloid Sci. 6, 162–170 (1951)

    Article  CAS  Google Scholar 

  28. C. van der Poel, Rheol. Acta 1(2), 198–205 (1958)

    Article  Google Scholar 

  29. J. C. Smith, J. Res, Nat. Bur. Stand. 79A, 419–423 (1975)

    Article  Google Scholar 

  30. E. H. Kerner, P. Phys, Soc. Lond. B 69(8), 808–813 (1956)

    Article  Google Scholar 

  31. T. B. Lewis, L. E. Nielsen, J. Appl, Polym. Sci. 14(6), 1449–1471 (1970)

    CAS  Google Scholar 

  32. L. E. Nielsen, R. F. Landel, Mechanical properties of polymers and composites, 2nd edn. (Marcel Dekker, New York, NY, 1994)

    Google Scholar 

  33. R. D. Sudduth, J. Appl, Polym. Sci. 48, 37–55 (1993)

    CAS  Google Scholar 

  34. D. S. Horne, Int. Dairy J. 8, 171–177 (1998)

    Article  CAS  Google Scholar 

  35. L. E. Nielsen, J. Appl, Polym. Sci. 10(1), 97–103 (1966)

    CAS  Google Scholar 

  36. B. Turcsányi, B. Pukánszky, F. Tüdõs, J. Mater, Sci. Lett. 7(2), 160–162 (1988)

    Article  Google Scholar 

  37. S. Ahmed, F. R. Jones, J. Mater, Sci. 25, 4933–4942 (1990)

    CAS  Google Scholar 

  38. S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai, Compos. Eng. 39, 933–961 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Fonterra Co-operative Group Ltd. and the New Zealand Ministry for Primary Industries for financial support through the Dairy Primary Growth Partnership programme in Food Structure Design. The authors also wish to acknowledge A. Beram (Potters Industries, Australia) for providing the glass beads, M. Loh and Dr. E. Nickless for technical support with CLSM, and Dr. S. Anema, Dr. S. Taylor and Dr. P. Watkinson for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Thionnet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thionnet, O., Havea, P., Gillies, G. et al. Influence of the Volume Fraction, Size and Surface Coating of Hard Spheres on the Microstructure and Rheological Properties of Model Mozzarella Cheese. Food Biophysics 12, 33–44 (2017). https://doi.org/10.1007/s11483-016-9460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9460-5

Keywords

Navigation