Skip to main content
Log in

Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This work is focused on physicochemical and emulsifying properties of pea (PP), chickpea (CP) and lentil (LP) proteins. We evaluated the molecular weight distributions, surface net charge, free sulfhydryl group (SH) and disulfide bond (SS) contents, protein solubility and thermal stability of the protein isolates. Their emulsifying properties (droplet size distribution, flocculation, coalescence and creaming) were also determined as function of pH values. The three protein isolates exhibit similar physicochemical properties, including good solubility and high thermal stability despite a high degree of denaturation. In addition, we analysed the influence of pH on stability of oil-in-water (O/W; 10 wt%/90 wt%) emulsions stabilized by the legume protein isolates. Concerning emulsifying ability and stability, the most unfavourable results for all three protein isolates relate to their isoelectric point (pI = 4.5). A significant improvement in emulsion stability takes place as the pH value departs from the pI. Overall, this study indicates that pea, chickpea and lentil proteins have great potential as food emulsifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.I. Boye, S. Aksay, S. Roufik, S. Ribéreau, M. Mondor, E. Farnworth, S.H. Rajamohamed, Food Res Int 43, 537–546 (2010)

    Article  CAS  Google Scholar 

  2. P. Watts, in Pulse Foods: Processing, Quality and Nutraceutical Applications, ed. by B.K. Tiwari, A. Gowen, B. McKenna (Elservier, Amsterdam, 2011), p. 437

    Chapter  Google Scholar 

  3. C. Bassett, J. Boye, R. Tyler, B.D. Oomah, Food Res Int 43, 397–398 (2010)

    Article  Google Scholar 

  4. M. Carbonaro, P. Maselli, A. Nucara, Food Res Int (2014). doi:10.1016/j.foodres.2014.11.007

    Google Scholar 

  5. H. Junrong, A.S. Henk, J.G.S. Jeroen, J. Zhengyu, S. Ellen, G.J.V.S. Alphons, Food Chem 101, 1338–1345 (2007)

    Article  Google Scholar 

  6. A. Gharsallaoui, E. Cases, O. Chambin, R Food Biophys 4, 273–280 (2009)

    Article  Google Scholar 

  7. A.R. Taherian, M. Mondor, J. Labranche, H. Drolet, D. Ippersiel, F. Lamarche, Food Res Int 44, 2505–2514 (2011)

    Article  CAS  Google Scholar 

  8. N. Wang, R. Toews, Food Res Int 44, 2515–2523 (2011)

    Article  CAS  Google Scholar 

  9. J. Han, J.A.M. Janz, M. Gerlat, Food Res Int 43, 627–633 (2010)

    Article  CAS  Google Scholar 

  10. Z. Pietrasik, J.A.M. Janz, Food Res Int 43, 602–608 (2010)

    Article  CAS  Google Scholar 

  11. L.P.D. Marchais, M. Foisy, S. Mercier, S. Villeneuve, M. Mondor, Procedia Food Sci 1, 1425–1430 (2011)

    Article  Google Scholar 

  12. F. Zare, C.P. Champagne, B.K. Simpsonc, V. Orsat, J.I. Boye, LWT Food Sci Technol 45, 155–160 (2012)

    Article  CAS  Google Scholar 

  13. R. Toews, N. Wang, Food Res Int 52, 445–451 (2013)

    Article  CAS  Google Scholar 

  14. C.H. Tang, LWT Food Sci Technol 41, 1380–1388 (2008)

    Article  CAS  Google Scholar 

  15. E.M. Papalamprou, G.I. Doxastakis, V. Kiosseoglou, V.J. Sci, Food Agric 90, 304–313 (2010)

    Article  CAS  Google Scholar 

  16. A.C. Karaca, N. Low, M. Nickerson, Food Res Int 44, 2742–2750 (2011)

    Article  CAS  Google Scholar 

  17. E.Y. Ladjal, M. Chibane, Int Food Res J 22, 987–996 (2015)

    Google Scholar 

  18. U.K. Laemmli, Nature 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  19. C.H. Tang, X. Sun, J. Agric, Food Chem 58, 6395–6402 (2010)

    Article  CAS  Google Scholar 

  20. C.F. Chau, P.C.K. Cheung, Food Chem 61, 429–433 (1998)

    Article  CAS  Google Scholar 

  21. M.M. Bradford, Anal Biochem 72, 248–254 (1976)

    Article  CAS  Google Scholar 

  22. H.N. Liang, C.H. Tang, Food Hydrocoll 33, 309–319 (2013)

    Article  CAS  Google Scholar 

  23. K. Shevkani, N. Singh, A. Kaur, J.C. Rana, Food Hydrocoll 43, 679–689 (2015)

    Article  CAS  Google Scholar 

  24. S. He, B.K. Simpson, M.O. Ngadi, Y. Ma, Food Chem 173, 397–404 (2015)

    Article  CAS  Google Scholar 

  25. J.L. Mession, M.L. Chihi, N. Sok, R. Saurel, Food Hydrocoll 46, 233–243 (2015)

    Article  CAS  Google Scholar 

  26. Y. Tian, J.B. Du, J. Appl Clin, Pediatrics 19, 1499–1501 (2007)

    Google Scholar 

  27. S. Damodaran, in Food Protein – Properties and Characterisation, ed. by S. Nakai, W. Molder (VCH, Neew York, 1996), pp. 167–234

    Google Scholar 

  28. C.H. Tang, X. Sun, S.W. Yin, Food Hydrocoll 23, 1771–1778 (2009)

    Article  CAS  Google Scholar 

  29. C.H. Tang, X. Sun, Food Hydrocoll 25, 315–324 (2011)

    Article  CAS  Google Scholar 

  30. S.W. Yin, J.C. Chen, S.D. Sun, C.H. Tang, X.Q. Yang, Q.B. Wen, J.R. Qi, Food Chem 128, 420–426 (2011)

    Article  CAS  Google Scholar 

  31. Y.N. Sreerama, V.B. Sashikala, V.M. Pratape, V. Singh, Food Chem 131, 462–468 (2012)

    Article  CAS  Google Scholar 

  32. I.A. Wani, D.S. Sogi, B.S. Gill, LWT Food Sci Technol 60, 848–854 (2015)

    Article  CAS  Google Scholar 

  33. V. Kiosseoglou, A. Paraskevopoulou, in Functional and Physicochemical Properties of Pulse Proteins, ed. by B.K. Tiwari, A. Gowen, B. McKenna (Elsevier, Amsterdam, 2011), p. 91

    Google Scholar 

  34. L. Shen, C.H. Tang, Food Hydrocoll 36, 278–286 (2014)

    Article  CAS  Google Scholar 

  35. J.F. Zayas, in Functionality of Proteins in Food, ed. by J.F. Zayas (Springer, Berlin Heidelberg, 1997), pp. 6–75

    Chapter  Google Scholar 

  36. C. Chung, D.J. McClements, Food Struct. 1, 106–126 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Béjaia University and the University of Seville for technical support. The authors are also grateful to the Microscopy and Microanalysis research services of the University of Seville (CITIUS-Universidad de Sevilla) for providing full access to their facilities and assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Romero.

Additional information

Headings

• Physicochemical characterization of pea, chickpea and lentil protein isolates;

• Good solubility, high thermal stability and high degree of denaturation

• Emulsifying properties are pH dependent with good results at pH values away from pI

• Investigated legume proteins could be useful as emulsifiers in food formulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladjal-Ettoumi, Y., Boudries, H., Chibane, M. et al. Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. Food Biophysics 11, 43–51 (2016). https://doi.org/10.1007/s11483-015-9411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9411-6

Keywords

Navigation