Skip to main content
Log in

Dynamics in Polysaccharide Glasses and Their Impact on the Stability of Encapsulated Flavors

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The aim of this work is to examine the correlation between measured instability of model flavor compounds in glassy matrices with the calorimetric relaxation times of the matrices. Spray-dried carbohydrate matrices were chosen as the model compounds for this study. Enthalpy relaxation times were determined for spray-dried carbohydrate matrices using differential and isothermal calorimetric methods. The losses of the volatile methyl acetate, ethyl acetate and limonene, as well as formation of limonene oxidation products, were measured by gas chromatography. Storage conditions were 30 and 40 °C, with samples equilibrated with 11, 23, 33 and 43 % RH at each temperature. A comparison of the relaxation times for temperatures below Tg was made using Modulated DSC (MDSC) and a Thermal Activity Monitor (TAM). TAM yields significantly lower values for relaxation times implying that it is capturing some of the faster dynamics as well as dynamics that are activated near Tg. However, plots of relaxation times as determined by both techniques versus temperature appear to converge at Tg. An increase in the relative humidity results in moderately higher loss of volatiles (methyl acetate, ethyl acetate and limonene) and greater oxidation rates. In general, there is a good correlation between relaxation time and stability, with greater enthalpy relaxation time associated with better stability. Enthalpy relaxation time appears to be a useful predictor of stability for both loss of volatiles and oxidation of limonene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Gouin, Trends Food Sci. Technol. 15, 330–347 (2004)

    Article  CAS  Google Scholar 

  2. J. Ubbink, A.M. Schoonman, Flavor delivery systems, in Kirk-Othmer Encyclopedia of Chemical Technology, ed. by S. Azra (Wiley, New York, 2005), pp. 527–563

    Google Scholar 

  3. L. Doorn, F. Campanile Gum s and Stabilisers for the Food Industry (2006), pp. 268–274

  4. M. Porzio, Food Technol. 66, 52–64 (2012)

    CAS  Google Scholar 

  5. G.A. Reineccius, Dry. Technol. 22, 1289–1324 (2004)

    Article  Google Scholar 

  6. S. Anandaraman, G.A. Reineccius, Food Technol. 40, 88–93 (1986)

    CAS  Google Scholar 

  7. W. Baisier, G.A. Reineccius, Perfumer & Flavorist 14, 48–53 (1989)

    CAS  Google Scholar 

  8. R.L. Anaandaraman, A. Vaezy, A. Schober, Y. Rada, R.M.T.V. Rong, R. Sleeuwen, S. Golding, V. Zhang, Normand. Carbohydr. Polym. 97, 352–357 (2013)

    Article  Google Scholar 

  9. Y.M. Gunning, R. Parker, S.G. Ring, Carbohydr. Res. 329, 377–385 (2000)

    Article  CAS  Google Scholar 

  10. D.W. Bohn, K.R. Cadwallader, S.J. Schmidt, J. Food Sci. 70, E109–E116 (2005)

    Article  CAS  Google Scholar 

  11. D. Kilburn, J. Claude, T. Schweizer, A. Alam, J. Ubbink, Biomacromolecules 6, 864–879 (2005)

    Article  CAS  Google Scholar 

  12. S. Townrow, D. Kilburn, A. Alam, J. Ubbink, J. Phys. Chem. B 111, 12643–12648 (2007)

    Article  CAS  Google Scholar 

  13. S.A. Luthra, I.M. Hodge, M. Utz, M.J. Pikal, J. Pharm. Sci. 97, 5240–5251 (2008)

    Article  CAS  Google Scholar 

  14. B. Wang, M.J. Pikal, J. Pharm. Sci. 99, 663–682 (2010)

    Article  CAS  Google Scholar 

  15. B. Wang, M.T. Cicerone, Y. Aso, M.J. Pikal, J. Pharm. Sci. 99, 683–700 (2010)

    Article  CAS  Google Scholar 

  16. S.A. Luthra, E.Y. Shalaev, A. Medek, J. Hong, M.J. Pikal, J. Pharm. Sci. 101, 3110–3123 (2012)

    Article  CAS  Google Scholar 

  17. N. Chieng, M. Mizuno, M.J. Pikal, Eur. J. Biopharm. 85, 189–196 (2013)

    Article  CAS  Google Scholar 

  18. N. Chieng, M.T. Cicerone, Q. Zhong, M. Liu, M.J. Pikal, Eur. J. Biopharm. 85, 197–206 (2013)

    Article  CAS  Google Scholar 

  19. L.C.E. Struik, Physical aging in amorphous polymers and other materials (Elsevier Scientific Pub. Co, Amsterdam, 1978)

    Google Scholar 

  20. B.C. Hancock, S.L. Shamblin, G. Zografi, Pharm. Res. 12, 799–806 (1995)

    Article  CAS  Google Scholar 

  21. I.M. Hodge, J. Non-Cryst. Solids 169, 211–266 (1994)

    Article  CAS  Google Scholar 

  22. D.Q.M. Craig, M. Barsnes, P.G. Royall, V.L. Kett, Pharm. Res. 17, 696–700 (2000)

    Article  CAS  Google Scholar 

  23. D.J. Hourston, M. Song, A. Hammiche, H.M. Pollock, M. Reading, Polymer 37, 243–247 (1996)

    Article  CAS  Google Scholar 

  24. A.M. Lammert, R.M. Lammert, S.J. Schmidt, J. Therm. Anal. Calorim. 55, 949–975 (1999)

    Article  CAS  Google Scholar 

  25. A. Alegria, A. Goitiandia, I. Telleria, J. Colmenero, Macromolecules 30, 3881–3887 (1997)

    Article  CAS  Google Scholar 

  26. F. Badii, C. Martinet, J.R. Mitchell, I.A. Farhat, Food Hydrocoll. 20, 879–884 (2006)

    Article  CAS  Google Scholar 

  27. H.J. Chung, B. Yoo, S.T. Lim, Starch 57, 354–362 (2005)

    Article  CAS  Google Scholar 

  28. K.L. Ngai, D.J. Plazek, Rubber Chem. Technol. 68, 376–434 (1995)

    Article  CAS  Google Scholar 

  29. C.M. Roland, K.L. Ngai, Macromolecules 24, 2261–2265 (1991)

    Article  CAS  Google Scholar 

  30. K. Kawakami, M.J. Pikal, J. Pharm. Sci. 94, 948–965 (2005)

    Article  CAS  Google Scholar 

  31. P. Tong, G. Zografi, Pharm. Res. 16, 1186–1192 (1999)

    Article  CAS  Google Scholar 

  32. B.C. Hancock, S.L. Shamblin, Thermochim. Acta 380, 95–107 (2001)

    Article  CAS  Google Scholar 

  33. Y.T. Liu, B. Bhandari, W.B. Zhou, J. Agric. Food Chem. 54, 5701–5717 (2006)

    Article  CAS  Google Scholar 

  34. S.L. Shamblin, B.C. Hancock, Y. Dupuis, M.J. Pikal, J. Pharm. Sci. 89, 417–427 (2000)

    Article  CAS  Google Scholar 

  35. Z. Jiang, C.T. Imrie, J.M. Hutchinson, J. Therm. Anal. Calorim. 64, 85–107 (2001)

    Article  CAS  Google Scholar 

  36. S. Weyer, A. Hensel, C. Schick, Thermochim. Acta 304 Y305:267 Y 275 (1997)

  37. J. Liu, D.R. Rigsbee, C. Stotz, M.J. Pikal, J. Pharm. Sci. 91, 1853–1862 (2002)

    Article  CAS  Google Scholar 

  38. C. Bhugra, R. Shmeis, S.L. Krill, M.J. Pikal, Pharm. Res. 23, 2277–2290 (2006)

    Article  CAS  Google Scholar 

  39. C. Bhugra, S. Rambhatla, A. Bakri, S. Duddu, D. Miller, M. Pikal, D. Lechuga-Ballesteros, J. Pharm. Sci. 96, 1258–1269 (2007)

    Article  CAS  Google Scholar 

  40. C. Bhugra, R. Shmeis, S.L. Krill, M.J. Pikal, J. Pharm. Sci. 97, 455–472 (2008)

    Article  CAS  Google Scholar 

  41. S. Montserrate, J. Appl. Polym. Sci. 44, 545–554 (1992)

    Article  Google Scholar 

  42. H.J. Chung, S.T. Lim, Food Hydrocoll. 17, 851–861 (2003)

    Article  Google Scholar 

  43. H.J. Chung, S.T. Lim, Starch-Starke 58, 599–610 (2006)

    Article  CAS  Google Scholar 

  44. H.J. Chung, H.I. Chang, S.T. Lim, Carbohydr. Polym. 58, 101–107 (2004)

    Article  CAS  Google Scholar 

  45. S.L. Shamblin, B. Hancock, M.J. Pikal, Pharm. Res. 23, 2254–2268 (2006)

    Article  CAS  Google Scholar 

  46. L. Chang, D. Shepherd, J. Sun, D. Ouellette, K.L. Grant, X. Tang, M.J. Pikal, J. Pharm. Sci. 94, 1427–1444 (2005)

    Article  CAS  Google Scholar 

  47. M.J. Pikal, D. Rigsbee, M.L. Roy, D. Galreath, K.J. Kovach, B. Wang, J.F. Carpenter, M.T. Cicerone, J. Pharm. Sci. 97, 5106–5121 (2008)

    Article  CAS  Google Scholar 

  48. M.J. Pikal, S. Shah, Int. J. Pharm. 62, 165–186 (1990)

    Article  CAS  Google Scholar 

  49. V. Orlien, A.B.. Andersen, T. Sinkko, L.H. Skibsted, Food Chem. 68, 191–199 (2000)

  50. A.B.. Andersen, J. Risbo, M.L. Andersen, L.H. Skibsted, Food Chem. 70, 499–508 (2000)

  51. V. Orlien, J. Risbo, H. Rantanen, L.H. Skibsted, Food Chem. 94, 37–46 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Givaudan Flavors Inc. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Paul Siegel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahni, E.K., Thakur, M., Chaney, M.A. et al. Dynamics in Polysaccharide Glasses and Their Impact on the Stability of Encapsulated Flavors. Food Biophysics 11, 20–33 (2016). https://doi.org/10.1007/s11483-015-9405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9405-4

Keywords

Navigation