Skip to main content

Advertisement

Log in

A Quantitative Approach to SIV Functional Latency in Brain Macrophages

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Lentiviruses are retroviruses that primarily infect myeloid cells, leading to acute inflammatory infections in many tissues particularly, lung, joints and the central nervous system (CNS). Acute infection by lentiviruses is followed by persistent/latent infections that are not cleared by the host immune system. HIV and SIV are lentiviruses that also infect CD4+ lymphocytes as well as myeloid cells in blood and multiple tissues. HIV infection of myeloid cells in brain, lung and heart cause tissue specific diseases as well as infect cells in gut, lymph nodes and spleen. AIDS dementia and other tissue specific disease are observed when infected individuals are immunosuppressed and the number of circulating CD4+ T cells declines to low levels. Antiretroviral therapy (ART) controls viral spread and dramatically changes the course of immunodeficiency and AIDS dementia. However, ART does not eliminate virus-infected cells. Brain macrophages contain HIV DNA and may represent a latent reservoir that persists. HIV latency in CD4+ lymphocytes is the main focus of current research and concern in efforts to eradicate HIV. However, a number of studies have demonstrated that myeloid cells in blood and tissues of ART suppressed individuals harbor HIV DNA. The resident macrophages in tissues such as brain (microglia), spleen (red pulp macrophages) and alveolar macrophages in lung are derived from the yolk sac and can self renew. The question of the latent myeloid reservoir in HIV has not been rigorously examined and its potential as a barrier to eradication been considered. Using a well characterized SIV ART suppressed, non-human primate (NHP) model, our laboratory developed the first quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes and more recently developed a similar protocol for the assessment of latently infected myeloid cells in blood and brain. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro. These studies demonstrate for the first time that myeloid cells have the potential to be a latent reservoir of HIV that produces infectious virus that can be reactivated in the absence of ART and during HIV eradication strategies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abreu CM, Price SL, Shirk EN, Cunha RD, Pianowski LF, Clements JE, Tanuri A, Gama L (2014) Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One 9:e97257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alfano M, Graziano F, Genovese L, Poli G (2013) Macrophage polarization at the crossroad between HIV-1 infection and cancer development. Arterioscler Thromb Vasc Biol 33:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Anderson AM, Munoz-Moreno JA, McClernon DR, Ellis RJ, Cookson D, Clifford DB, Collier AC, Gelman BB, Marra CM, McArthur JC, McCutchan JA, Morgello S, Sacktor N, Simpson DM, Franklin DR, Heaton RK, Grant I, Letendre SL, Group C (2017) Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis 215:105–113

    Article  PubMed  CAS  Google Scholar 

  • Arnaout MA (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75:1037–1050

    PubMed  CAS  Google Scholar 

  • Avalos CR, Price SL, Forsyth ER, Pin JN, Shirk EN, Bullock BT, Queen SE, Li M, Gellerup D, O'Connor SL, Zink MC, Mankowski JL, Gama L, Clements JE (2016) Quantitation of productively infected monocytes and macrophages of simian immunodeficiency virus-infected macaques. J Virol 90:5643–5656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avalos CR, Abreu CM, Queen SE, Li M, Price S, Shirk EN, Engle EL, Forsyth E, Bullock BT, Mac Gabhann F, Wietgrefe SW, Haase AT, Zink MC, Mankowski JL, Clements JE, Gama L. 2017. Brain macrophages in simian immunodeficiency virus-infected, antiretroviral-suppressed macaques: a functional latent reservoir. MBio 8

  • Barber SA, Gama L, Dudaronek JM, Voelker T, Tarwater PM, Clements JE (2006a) Mechanism for the establishment of transcriptional HIV latency in the brain in a simian immunodeficiency virus-macaque model. J Infect Dis 193:963–970

    Article  PubMed  CAS  Google Scholar 

  • Barber SA, Gama L, Li M, Voelker T, Anderson JE, Zink MC, Tarwater PM, Carruth LM, Clements JE (2006b) Longitudinal analysis of simian immunodeficiency virus (SIV) replication in the lungs: compartmentalized regulation of SIV. J Infect Dis 194:931–938

    Article  PubMed  CAS  Google Scholar 

  • Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann R, Schwinn A, Muller J, Stahl-Hennig C, Coulibaly C, Hunsmann G, Czub S, Rethwilm A, Dorries R, ter Meulen V (1993) In vitro and in vivo infection of rhesus monkey microglial cells by simian immunodeficiency virus. Virology 195:561–568

    Article  PubMed  CAS  Google Scholar 

  • Burdo TH, Lackner A, Williams KC (2013) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254:102–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Sugimoto C, Arainga M, Alvarez X, Didier ES, Kuroda MJ (2014) In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J Immunol 192:2821–2829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, Peytavin G, Tubiana R, Pialoux G, Katlama C (2010) Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis 50:773–778

    Article  PubMed  Google Scholar 

  • Cassetta L, Kajaste-Rudnitski A, Coradin T, Saba E, Della Chiara G, Barbagallo M, Graziano F, Alfano M, Cassol E, Vicenzi E, Poli G (2013) M1 polarization of human monocyte-derived macrophages restricts pre and postintegration steps of HIV-1 replication. AIDS 27:1847–1856

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Le Rouzic E, Kearney JA, Mansky LM, Benichou S (2004) Vpr-mediated incorporation of UNG2 into HIV-1 particles is required to modulate the virus mutation rate and for replication in macrophages. J Biol Chem 279:28419–28425

    Article  PubMed  CAS  Google Scholar 

  • Cherry JD, Olschowka JA, O'Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiodi F, Albert J, Olausson E, Norkrans G, Hagberg L, Sonnerborg A, Asjo B, Fenyo EM (1988) Isolation frequency of human immunodeficiency virus from cerebrospinal fluid and blood of patients with varying severity of HIV infection. AIDS Res Hum Retrovir 4:351–358

    Article  PubMed  CAS  Google Scholar 

  • Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, Lifson JD, Zink MC (2002) The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis 186:905–913

    Article  PubMed  CAS  Google Scholar 

  • Cobos Jimenez V, Booiman T, de Taeye SW, van Dort KA, Rits MA, Hamann J, Kootstra NA (2012) Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons. Sci Rep 2:763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cosenza MA, Zhao ML, Si Q, Lee SC (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12:442–455

    Article  PubMed  CAS  Google Scholar 

  • Craig LE, Sheffer D, Meyer AL, Hauer D, Lechner F, Peterhans E, Adams RJ, Clements JE, Narayan O, Zink MC (1997) Pathogenesis of ovine lentiviral encephalitis: derivation of a neurovirulent strain by in vivo passage. J Neuro-Oncol 3:417–427

    CAS  Google Scholar 

  • Dar RD, Hosmane NN, Arkin MR, Siliciano RF, Weinberger LS (2014) Screening for noise in gene expression identifies drug synergies. Science 344:1392–1396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Descombes P, Schibler U (1991) A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67:569–579

    Article  PubMed  CAS  Google Scholar 

  • Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, Siliciano RF, Zink MC, Clements JE (2009) A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol 83:9247–9257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eden A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, Price RW, Gisslen M (2010) HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 202:1819–1825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Epstein LG, Sharer LR, Cho ES, Myenhofer M, Navia B, Price RW (1984) HTLV-III/LAV-like retrovirus particles in the brains of patients with AIDS encephalopathy. AIDS Res 1:447–454

    Article  PubMed  Google Scholar 

  • Francella N, Elliott ST, Yi Y, Gwyn SE, Ortiz AM, Li B, Silvestri G, Paiardini M, Derdeyn CA, Collman RG (2013) Decreased plasticity of coreceptor use by CD4-independent SIV Envs that emerge in vivo. Retrovirology 10:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gama L, Abreu CM, Shirk EN, Price SL, Li M, Laird GM, Pate KA, Wietgrefe SW, O'Connor SL, Pianowski L, Haase AT, Van Lint C, Siliciano RF, Clements JE, Group L-SS (2017) Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 31:5–14

    Article  PubMed  CAS  Google Scholar 

  • Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, Narayan O, Molineaux S, Clements JE, Ghotbi Z (1985a) Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow. Proc Natl Acad Sci U S A 82:7086–7090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gendelman HE, Moench TR, Narayan O, Griffin DE, Clements JE (1985b) A double labeling technique for performing immunocytochemistry and in situ hybridization in virus infected cell cultures and tissues. J Virol Methods 11:93–103

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, Narayan O, Kennedy-Stoskopf S, Kennedy PG, Ghotbi Z, Clements JE, Stanley J, Pezeshkpour G (1986) Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages. J Virol 58:67–74

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404

    Article  PubMed  CAS  Google Scholar 

  • Gonda MA, Wong-Staal F, Gallo RC, Clements JE, Narayan O, Gilden RV (1985) Sequence homology and morphologic similarity of HTLV-III and visna virus, a pathogenic lentivirus. Science 227:173–177

    Article  PubMed  CAS  Google Scholar 

  • Gonda MA, Braun MJ, Clements JE, Pyper JM, Wong-Staal F, Gallo RC, Gilden RV (1986) Human T-cell lymphotropic virus type III shares sequence homology with a family of pathogenic lentiviruses. Proc Natl Acad Sci U S A 83:4007–4011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  • Gorry PR, Churchill M, Crowe SM, Cunningham AL, Gabuzda D (2005) Pathogenesis of macrophage tropic HIV-1. Curr HIV Res 3:53–60

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT, Wolf RA, Saxon A (1981) Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 305:1425–1431

    Article  PubMed  CAS  Google Scholar 

  • Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14:571–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, Garcia-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804

    Article  PubMed  CAS  Google Scholar 

  • Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–875

    Article  PubMed  CAS  Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, Group C (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, Group C, Group H (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol 17:3–16

    CAS  Google Scholar 

  • Henderson AJ, Calame KL (1997) CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc Natl Acad Sci U S A 94:8714–8719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henderson AJ, Zou X, Calame KL (1995) C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J Virol 69:5337–5344

    PubMed  PubMed Central  CAS  Google Scholar 

  • Henderson AJ, Connor RI, Calame KL (1996) C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 5:91–101

    Article  PubMed  CAS  Google Scholar 

  • Henrich TJ, Hanhauser E, Marty FM, Sirignano MN, Keating S, Lee TH, Robles YP, Davis BT, Li JZ, Heisey A, Hill AL, Busch MP, Armand P, Soiffer RJ, Altfeld M, Kuritzkes DR (2014) Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med 161:319–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho DD, Rota TR, Schooley RT, Kaplan JC, Allan JD, Groopman JE, Resnick L, Felsenstein D, Andrews CA, Hirsch MS (1985) Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med 313:1493–1497

    Article  PubMed  CAS  Google Scholar 

  • Honda Y, Rogers L, Nakata K, Zhao BY, Pine R, Nakai Y, Kurosu K, Rom WN, Weiden M (1998) Type I interferon induces inhibitory 16-kD CCAAT/enhancer binding protein (C/EBP) beta, repressing the HIV-1 long terminal repeat in macrophages: pulmonary tuberculosis alters C/EBP expression, enhancing HIV-1 replication. J Exp Med 188:1255–1265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Igarashi T, Imamichi H, Brown CR, Hirsch VM, Martin MA (2003) The emergence and characterization of macrophage-tropic SIV/HIV chimeric viruses (SHIVs) present in CD4+ T cell-depleted rhesus monkeys. J Leukoc Biol 74:772–780

    Article  PubMed  CAS  Google Scholar 

  • Karita E, Nkengasong JN, Willems B, Vanham G, Fransen K, Heyndrickx L, Janssens W, Piot P, van der Groen G (1997) Macrophage-tropism of HIV-1 isolates of different genetic subtypes. AIDS 11:1303–1304

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PG (1988) Neurological complications of human immunodeficiency virus infection. Postgrad Med J 64:180–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP (1997) The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 6:235–244

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kadomatsu K (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar N, Chahroudi A, Silvestri G (2016) Animal models to achieve an HIV cure. Curr Opin HIV AIDS 11:432–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamers SL, Gray RR, Salemi M, Huysentruyt LC, McGrath MS (2011) HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. Infect Genet Evol 11:31–37

    Article  PubMed  Google Scholar 

  • Mankowski JL, Flaherty MT, Spelman JP, Hauer DA, Didier PJ, Amedee AM, Murphey-Corb M, Kirstein LM, Munoz A, Clements JE, Zink MC (1997) Pathogenesis of simian immunodeficiency virus encephalitis: viral determinants of neurovirulence. J Virol 71:6055–6060

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mankowski JL, Carter DL, Spelman JP, Nealen ML, Maughan KR, Kirstein LM, Didier PJ, Adams RJ, Murphey-Corb M, Zink MC (1998) Pathogenesis of simian immunodeficiency virus pneumonia: an immunopathological response to virus. Am J Pathol 153:1123–1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    Article  PubMed  CAS  Google Scholar 

  • Masur H, Michelis MA, Greene JB, Onorato I, Stouwe RA, Holzman RS, Wormser G, Brettman L, Lange M, Murray HW, Cunningham-Rundles S (1981) An outbreak of community-acquired pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med 305:1431–1438

    Article  PubMed  CAS  Google Scholar 

  • McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol 67:699–714

    PubMed  CAS  Google Scholar 

  • Mulder R, Banete A, Basta S (2014) Spleen-derived macrophages are readily polarized into classically activated (M1) or alternatively activated (M2) states. Immunobiology 219:737–745

    Article  PubMed  CAS  Google Scholar 

  • Narayan O, Kennedy-Stoskopf S, Sheffer D, Griffin DE, Clements JE (1983) Activation of caprine arthritis-encephalitis virus expression during maturation of monocytes to macrophages. Infect Immun 41:67–73

    PubMed  PubMed Central  CAS  Google Scholar 

  • Neuen-Jacob E, Arendt G, Wendtland B, Jacob B, Schneeweis M, Wechsler W (1993) Frequency and topographical distribution of CD68-positive macrophages and HIV-1 core proteins in HIV-associated brain lesions. Clin Neuropathol 12:315–324

    PubMed  CAS  Google Scholar 

  • Okabe Y, Medzhitov R (2014) Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157:832–844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665

    Article  PubMed  CAS  Google Scholar 

  • Ortiz AM, Klatt NR, Li B, Yi Y, Tabb B, Hao XP, Sternberg L, Lawson B, Carnathan PM, Cramer EM, Engram JC, Little DM, Ryzhova E, Gonzalez-Scarano F, Paiardini M, Ansari AA, Ratcliffe S, Else JG, Brenchley JM, Collman RG, Estes JD, Derdeyn CA, Silvestri G (2011) Depletion of CD4(+) T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques. J Clin Invest 121:4433–4445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peluso R, Haase A, Stowring L, Edwards M, Ventura P (1985) A Trojan horse mechanism for the spread of visna virus in monocytes. Virology 147:231–236

    Article  PubMed  CAS  Google Scholar 

  • Pierson T, McArthur J, Siliciano RF (2000) Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 18:665–708

    Article  PubMed  CAS  Google Scholar 

  • Pollack RA, Jones RB, Pertea M, Bruner KM, Martin AR, Thomas AS, Capoferri AA, Beg SA, Huang SH, Karandish S, Hao H, Halper-Stromberg E, Yong PC, Kovacs C, Benko E, Siliciano RF, Ho YC (2017) Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the Proviral landscape. Cell Host Microbe 21(494–506):e4

    Google Scholar 

  • Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Sun X, Shao X, Cheng C, Feng J, Sun W, Gu D, Liu W, Xu F, Duan Y (2015) Macrophage-microglia networks drive M1 microglia polarization after mycobacterium infection. Inflammation 38:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Rainho JN, Martins MA, Cunyat F, Watkins IT, Watkins DI, Stevenson M (2015) Nef is dispensable for resistance of simian immunodeficiency virus-infected macrophages to CD8+ T cell killing. J Virol 89:10625–10636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rappaport J, Volsky DJ (2015) Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment. J Neuro-Oncol 21:235–241

    CAS  Google Scholar 

  • Redente EF, Higgins DM, Dwyer-Nield LD, Orme IM, Gonzalez-Juarrero M, Malkinson AM (2010) Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation. J Leukoc Biol 88:159–168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenbloom DI, Elliott O, Hill AL, Henrich TJ, Siliciano JM, Siliciano RF. 2015. Designing and interpreting limiting dilution assays: general principles and applications to the latent reservoir for human immunodeficiency Virus-1. Open forum Infect Dis 2:ofv123

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  PubMed  CAS  Google Scholar 

  • Sharova N, Wu Y, Zhu X, Stranska R, Kaushik R, Sharkey M, Stevenson M (2008) Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction. PLoS Pathog 4:e1000057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaw GM, Harper ME, Hahn BH, Epstein LG, Gajdusek DC, Price RW, Navia BA, Petito CK, O'Hara CJ, Groopman JE et al (1985) HTLV-III infection in brains of children and adults with AIDS encephalopathy. Science 227:177–182

    Article  PubMed  CAS  Google Scholar 

  • Spudich SS, Nilsson AC, Lollo ND, Liegler TJ, Petropoulos CJ, Deeks SG, Paxinos EE, Price RW (2005) Cerebrospinal fluid HIV infection and pleocytosis: relation to systemic infection and antiretroviral treatment. BMC Infect Dis 5:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, Pollet E, Ardouin L, Luche H, Sanchez C, Dalod M, Malissen B, Henri S (2013) Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–938

    Article  PubMed  CAS  Google Scholar 

  • Tong-Starksen SE, Luciw PA, Peterlin BM (1987) Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc Natl Acad Sci U S A 84:6845–6849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vojnov L, Martins MA, Bean AT, Veloso de Santana MG, Sacha JB, Wilson NA, Bonaldo MC, Galler R, Stevenson M, Watkins DI (2012) The majority of freshly sorted simian immunodeficiency virus (SIV)-specific CD8(+) T cells cannot suppress viral replication in SIV-infected macrophages. J Virol 86:4682–4687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, Tran A, Gual P, Mallat A, Lotersztajn S, Pavoine C (2014) M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59:130–142

    Article  PubMed  CAS  Google Scholar 

  • Weiden M, Tanaka N, Qiao Y, Zhao BY, Honda Y, Nakata K, Canova A, Levy DE, Rom WN, Pine R (2000) Differentiation of monocytes to macrophages switches the mycobacterium tuberculosis effect on HIV-1 replication from stimulation to inhibition: modulation of interferon response and CCAAT/enhancer binding protein beta expression. J Immunol 165:2028–2039

    Article  PubMed  CAS  Google Scholar 

  • Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 tat fluctuations drive phenotypic diversity. Cell 122:169–182

    Article  PubMed  CAS  Google Scholar 

  • Westmoreland SV, Converse AP, Hrecka K, Hurley M, Knight H, Piatak M, Lifson J, Mansfield KG, Skowronski J, Desrosiers RC (2014) SIV vpx is essential for macrophage infection but not for development of AIDS. PLoS One 9:e84463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J, Shetty M, Parenteau L, Cabral C, Shields J, Blackmore S, Smith JY, Brinkman AL, Peter LE, Mathew SI, Smith KM, Borducchi EN, Rosenbloom DI, Lewis MG, Hattersley J, Li B, Hesselgesser J, Geleziunas R, Robb ML, Kim JH, Michael NL, Barouch DH (2014) Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512:74–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams K, Lackner A, Mallard J (2016) Non-human primate models of SIV infection and CNS neuropathology. Curr Opin Virol 19:92–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Witwer KW, Gama L, Li M, Bartizal CM, Queen SE, Varrone JJ, Brice AK, Graham DR, Tarwater PM, Mankowski JL, Zink MC, Clements JE (2009) Coordinated regulation of SIV replication and immune responses in the CNS. PLoS One 4:e8129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu H, Wang Z, Li J, Wu H, Peng Y, Fan L, Chen J, Gu C, Yan F, Wang L, Chen G (2017) The polarization states of microglia in TBI: a new paradigm for pharmacological intervention. Neural Plast 2017:5405104

    PubMed  PubMed Central  Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91

    Article  PubMed  CAS  Google Scholar 

  • Zayyad Z, Spudich S (2015) Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 12:16–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Rua R, Ng T, Vongrad V, Ho YS, Geczy C, Hsu K, Brew BJ, Saksena NK (2009) Evidence for predilection of macrophage infiltration patterns in the deeper midline and mesial temporal structures of the brain uniquely in patients with HIV-associated dementia. BMC Infect Dis 9:192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zink MC, Clements JE (2002) A novel simian immunodeficiency virus model that provides insight into mechanisms of human immunodeficiency virus central nervous system disease. J Neuro-Oncol 8(Suppl 2):42–48

    CAS  Google Scholar 

  • Zink MC, Narayan O, Kennedy PG, Clements JE (1987) Pathogenesis of visna/maedi and caprine arthritis-encephalitis: new leads on the mechanism of restricted virus replication and persistent inflammation. Vet Immunol Immunopathol 15:167–180

    Article  PubMed  CAS  Google Scholar 

  • Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M Jr, Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE (1999) High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 73:10480–10488

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zink MC, Brice AK, Kelly KM, Queen SE, Gama L, Li M, Adams RJ, Bartizal C, Varrone J, Rabi SA, Graham DR, Tarwater PM, Mankowski JL, Clements JE (2010) Simian immunodeficiency virus-infected macaques treated with highly active antiretroviral therapy have reduced central nervous system viral replication and inflammation but persistence of viral DNA. J Infect Dis 202:161–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

These studies were funded by NIH awards R01NS089482, R01NS077869, P40OD0131117, R01NS055651, R56AI118753, R01AI127142, P01MH070306, P01AI131306, and the Johns Hopkins University Center for AIDS Research P30AI094189.

Anti-retroviral compounds for these studies were kindly donated by Gilead, ViiV Healthcare, Bristol-Meyers Squibb, Merck, Abbvie, Janssen, and Roche. These studies were supported by the excellent technical staff in the Retrovirus Lab at Johns Hopkins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice E. Clements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, C., Shirk, E.N., Queen, S.E. et al. A Quantitative Approach to SIV Functional Latency in Brain Macrophages. J Neuroimmune Pharmacol 14, 23–32 (2019). https://doi.org/10.1007/s11481-018-9803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-018-9803-8

Keywords

Navigation