Skip to main content
Log in

Regulation of Cell Surface CB2 Receptor during Human B Cell Activation and Differentiation

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Cannabinoid receptor type 2 (CB2) is the primary receptor pathway mediating the immunologic consequences of cannabinoids. We recently reported that human peripheral blood B cells express CB2 on both the extracellular membrane and at intracellular sites, where-as monocytes and T cells only express intracellular CB2. To better understand the pattern of CB2 expression by human B cells, we examined CD20+ B cells from three tissue sources. Both surface and intracellular expression were present and uniform in cord blood B cells, where all cells exhibited a naïve mature phenotype (IgD+/CD38Dim). While naïve mature and quiescent memory B cells (IgD/CD38) from tonsils and peripheral blood exhibited a similar pattern, tonsillar activated B cells (IgD/CD38+) expressed little to no surface CB2. We hypothesized that regulation of the surface CB2 receptor may occur during B cell activation. Consistent with this, a B cell lymphoma cell line known to exhibit an activated phenotype (SUDHL-4) was found to lack cell surface CB2 but express intracellular CB2. Furthermore, in vitro activation of human cord blood resulted in a down-regulation of surface CB2 on those B cells acquiring the activated phenotype but not on those retaining IgD expression. Using a CB2 expressing cell line (293 T/CB2-GFP), confocal microscopy confirmed the presence of both cell surface expression and multifocal intracellular expression, the latter of which co-localized with endoplasmic reticulum but not with mitochondria, lysosomes, or nucleus. Our findings suggest a dynamic multi-compartment expression pattern for CB2 in B cells that is specifically modulated during the course of B cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

References

  • Agudelo M, Newton C, Widen R, Sherwood T, Nong L, Friedman H, Klein TW (2008) Cannabinoid receptor 2 (CB2) mediates immunoglobulin class switching from IgM to IgE in cultures of murine-purified B lymphocytes. J NeuroImmune Pharmacol 3(1):35–42. doi:10.1007/s11481-007-9088-9

    Article  PubMed  Google Scholar 

  • Aizpurua-Olaizola O, Elezgarai I, Rico-Barrio I, Zarandona I, Etxebarria N, Usobiaga A (2016) Targeting the endocannabinoid system: future therapeutic strategies. Drug Discov Today. doi:10.1016/j.drudis.2016.08.005

    PubMed  Google Scholar 

  • Atwood B, Wager-Miller J, Haskins C, Straiker A, Mackie K (2012) Functional selectivity in CB2 receptor signaling and regulation: implications for the therapeutic potential of CB2 ligands. Mol Pharmacol 81(2):250–263. doi:10.1124/mol.111.074013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Ray A, Dittel BN (2013) Cannabinoid receptor 2 (CB2) plays a role in the generation of germinal center and memory B cells, but not in the production of antigen-specific IgG and IgM, in response to T-dependent antigens. PLoS One 8(6):e67587. doi:10.1371/journal.pone.0067587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard G, Massa F, Puente N, Lourenco J, Bellocchio L, Soria-Gomez E, Matias I, Delamarre A, Metna-Laurent M, Cannich A, Hebert-Chatelain E, Mulle C, Ortega-Gutierrez S, Martin-Fontecha M, Klugmann M, Guggenhuber S, Lutz B, Gertsch J, Chaouloff F, Lopez-Rodriguez ML, Grandes P, Rossignol R, Marsicano G (2012) Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci 15:558–564. doi:10.1038/nn.3053

    Article  Google Scholar 

  • Brailoiu GC, Deliu E, Marcu J, Hoffman NE, Console-Bram L, Zhao P, Madesh M, Abood ME, Brailoiu E (2014) Differential activation of intracellular versus plasmalemmal CB2 cannabinoid receptors. Biochemistry 53(30):4990–4999. doi:10.1021/bi500632a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brailoiu GC, Oprea TI, Zhao P, Abood ME, Brailoiu E (2011) Intracellular cannabinoid type 1 (CB1) receptors are activated by anandamide. J Biol Chem 286:29166–29174. doi:10.1074/jbc.M110.217463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral GA, Rogers TJ, Lichtman AH (2015) Turning over a new leaf: cannabinoid and endocannabinoid modulation of immune function. J NeuroImmune Pharmacol 10(2):193–203. doi:10.1007/s11481-015-9615-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Carayon P, Marchand J, Dussossoy D, Derocq JM, Jbilo O, Bord A, Bouaboula M, Galiègue S, Mondière P, Pénarier G, Fur GL, Defrance T, Casellas P (1998) Modulation and functional involvement of CB2 peripheral cannabinoid receptors during B-cell differentiation. Blood 92(10):3605–3615

    CAS  PubMed  Google Scholar 

  • Castaneda JT, Harui A, Kiertscher SM, Roth JD, Roth MD (2013) Differential expression of intracellular and extracellular CB2 cannabinoid receptor protein by human peripheral blood leukocytes. J NeuroImmune Pharmacol 8(1):323–332. doi:10.1007/s11481-012-9430-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Coke CJ, Scarlett KA, Chetram MA, Jones KJ, Sandifer BJ, Davis AS, Marcus AI, Hinton CV (2016) Simultaneous activation of induced Heterodimerization between CXCR4 chemokine receptor and cannabinoid receptor 2 (CB2) reveals a mechanism for regulation of tumor progression. J Biol Chem 291(19):9991–10005. doi:10.1074/jbc.M115.712661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenstein TK, Meissler JJ (2015) Effects of cannabinoids on T-cell function and resistance to infection. J NeuroImmune Pharmacol 10(2):204–216. doi:10.1007/s11481-015-9603-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ettinger R, Sims GP, Fairhurst AM, Robbins R, da Silva YS, Spolski R, Leonard WJ, Lipsky PE (2005) IL-21 induces differentiation of human naïve and memory B cells into antibody-secreting plasma cells. J Immunol 175(12):7867–7879. doi:10.4049/jimmunol.175.12.7867

    Article  CAS  PubMed  Google Scholar 

  • Flordellis CS (2012) The plasticity of the 7TMR signaling machinery and the search for pharmacological selectivity. Curr Pharm Des 18(2):145–160. doi:10.2174/138161212799040556

    Article  CAS  PubMed  Google Scholar 

  • Gaudet HM, Cheng SB, Christensen EM, Filardo EJ (2015) The G-protein coupled estrogen receptor, GPER: the inside and inside-out story. Mol Cell Endocrinol 418(Pt 3):207–219. doi:10.1016/j.mce.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  • Graham ES, Angel CE, Schwarcz LE, Dunbar PR, Glass M (2010) Detailed characterization of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol 23(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Hegde VL, Nagarkatti M, Nagarkatti PS (2010) Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur J Immunol 40(12):3358–3371. doi:10.1002/eji.201040667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Tiedra S, Fabriàs G, Dávila D, Salanueva ÍJ, Casas J, Montes LR, Antón Z, García-Taboada E, Salazar-Roa M, Lorente M, Nylandsted J, Armstrong J, López-Valero I, McKee CS, Serrano-Puebla A, García-López R, González-Martínez J, Abad JL, Hanada K, Boya P, Goñi F, Guzmán M, Lovat P, Jäättelä M, Alonso A, Velasco G (2016) Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy 12(11):2213–2229. doi:10.1080/15548627.2016.1213927

    Article  PubMed  PubMed Central  Google Scholar 

  • Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79. doi:10.1007/3-540-26573-2_2

    Article  CAS  Google Scholar 

  • Jean-Alphonse F, Hanyaloglu AC (2011) Regulation of GPCR signal networks via membrane trafficking. Mol Cell Endocrinol 331(2):205–214. doi:10.1016/j.mce.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  • Jorda MA, Rayman N, Valk P, De Wee E, Delwel R (2003) Identification, characterization, and function of a novel oncogene: the peripheral cannabinoid receptor CB2. Ann N Y Acad Sci 996:10–16. doi:10.1111/j.1749-6632.2003.tb03227.x

    Article  CAS  PubMed  Google Scholar 

  • Klein TW, Cabral GA (2006) Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. J NeuroImmune Pharmacol 1(1):50–64. doi:10.1007/s11481-005-9007-x

    Article  PubMed  Google Scholar 

  • Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L, Friedman H (2003) The cannabinoid system and immune modulation. J Leukoc Biol 74(4):486–496. doi:10.1189/jlb.0303101

    Article  CAS  PubMed  Google Scholar 

  • Maccarrone M, Bab I, Biro T, Cabral GA, Dey SK, Di Marzo V, Konje JC, Kunos G, Mechoulam R, Pacher P, Sharkey KA, Zimmer A (2015) Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 36(5):277–296. doi:10.1016/j.tips.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKallip RJ, Lombard C, Martin BR, Nagarkatti M, Nagarkatti PS (2002) Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus and spleen as a mechanism of immunosuppression in vitro and in vivo. J Pharmacol Exp Ther 302(2):451–465. doi:10.1124/jpet.102.033506

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Bátkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58(3):389–462. doi:10.1124/pr.58.3.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Gómez E, Andradas C, Blasco-Benito S, Caffarel MM, García-Taboada E, Villa-Morales M, Moreno E, Hamann S, Martín-Villar E, Flores JM, Wenners A, Alkatout I, Klapper W, Röcken C, Bronsert P, Stickeler E, Staebler A, Bauer M, Arnold N, Soriano J, Pérez-Martínez M, Megías D, Moreno-Bueno G, Ortega-Gutiérrez S, Artola M, Vázquez-Villa H, Quintanilla M, Fernández-Piqueras J, Canela EI, McCormick PJ, Guzmán M, Sánchez C (2015) Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J Natl Cancer Inst 107(6):djv077. doi:10.1093/jnci/djv077

    Article  PubMed  Google Scholar 

  • Rayman N, Lam KH, Laman JD, Simons PJ, Löwenberg B, Sonneveld P, Delwel R (2004) Distinct expression profiles of the peripheral cannabinoid receptor in lymphoid tissues depending on receptor activation status. J Immunol 172(4):2111–2117. doi:10.4049/jimmunol.172.4.2111

    Article  CAS  PubMed  Google Scholar 

  • Roth MD, Castaneda JT, Kiertscher SM (2015) Exposure to Δ9-Tetrahydrocanninol impairs the differentiation of human monocyte-derived dendritic cells and their capacity for T cell activation. J NeuroImmune Pharmacol 10:333–343. doi:10.1007/s11481-015-9587-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth MD, Whittaker K, Salehi K, Tashkin DP, Baldwin GC (2004) Mechanisms for impaired effector function in alveolar macrophages from marijuana and cocaine smokers. J Neuroimmunol 147(1–2):82–86. doi:10.1016/j.jneuroim.2003.10.017

    Article  CAS  PubMed  Google Scholar 

  • Salazar M, Carracedo A, Salanueva IJ, Hernández-Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C, Torres S, García S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, González-Feria L, Iovanna JL, Guzmán M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119(5):1359–1372. doi:10.1172/JCI37948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarafian T, Kouyoumjian S, Khoshaghideh F, Tashkin DP, Roth MD (2003) Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Phys Lung Cell Mol Phys 284:L298–L306. doi:10.1152/ajplung.00157.2002

    CAS  Google Scholar 

  • Sarafian T, Montes C, Harui A, Beedanagari SR, Kiertscher S, Stripecke R, Hossepian D, Kitchen C, Kern R, Belperio J, Roth MD (2008) Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells. Toxicol Appl Pharmacol 231(3):282–290. doi:10.1016/j.taap.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmöle AC, Lundt R, Gennequin B, Schrage H, Beins E, Krämer A, Zimmer T, Limmer A, Zimmer A, Otte DM (2015) Expression analysis of CB2-GFP BAC transgenic mice. PLoS One 10(9):e0138986. doi:10.1371/journal.pone.0138986

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD (2002) Δ9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T-cells. J Neuroimmunol 133(1–2):124–131. doi:10.1016/S0165-5728(02)00370-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute on Drug Abuse, National Institutes of Health, under award numbers 5-R01-DA037102. JT Castaneda was supported by a Ruth L. Kirschstein National Research Service Award (NRSA) Individual Predoctoral Fellowship to Promote Diversity in Health-Related Research from the National Institute on Drug Abuse, National Institutes of Health, under award numbers 1 F31 DA036293 and by a North American Graduate Fellowship Award from the American College of Toxicology. Flow cytometry was performed in the UCLA Jonsson Comprehensive Cancer Center (JCCC) and Center for AIDS Research (CFAR) Flow Cytometry Core Facility that is supported by National Institutes of Health awards CA-16042 and AI-28697, and by the JCCC, the UCLA AIDS Institute, and the David Geffen School of Medicine at UCLA. Confocal laser scanning microscopy was performed at the CNSI Advanced Light Microscopy/Spectroscopy Shared Resource Facility at UCLA, supported with funding from NIH-NCRR shared resources grant (CJX1-443835-WS-29646) and NSF Major Research Instrumentation grant (CHE-0722519). Cord blood mononuclear cells derived from anonymized donors were obtained from the CFAR Virology Core Lab that is supported by the National Institutes of Health Award AI-28697 and by the UCLA AIDS Institute and the UCLA Council of Bioscience Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Roth.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaneda, J.T., Harui, A. & Roth, M.D. Regulation of Cell Surface CB2 Receptor during Human B Cell Activation and Differentiation. J Neuroimmune Pharmacol 12, 544–554 (2017). https://doi.org/10.1007/s11481-017-9744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-017-9744-7

Keywords

Navigation