Skip to main content
Log in

A Multifunctional Metamaterial Device with Tunable Broadband Absorption and Transmission Characteristics in the Terahertz Region

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a multifunctional terahertz (THz) metamaterial device with multifunction is proposed. Based on graphene and vanadium dioxide (VO2), tunable broadband absorption and transmission characteristics are realized. While VO2 is in the metallic phase, the device works in ultra-broadband absorption mode. The bandwidth of over 90% absorption is 5.36 THz, corresponding to a relative bandwidth of 90%. By adjusting the Fermi level of graphene, we can obtain a bandwidth modulation depth of 54%. By changing the conductivity of VO2, we can achieve an amplitude modulation depth of 87%. While VO2 is in the insulated phase, the device works in transmission mode. The frequency range of over 90% transmissivity is 5.00–7.15 THz. Similarly, by adjusting VO2 conductivity, an amplitude modulation depth of 96% can be achieved. Based on transmission line theory, an equivalent circuit is established to reveal the modulation mechanism. Theoretical results are in good agreement with the ones got from simulation. Compared with the papers previously published, the structure has certain advantages on function switching, performance tuning, and modulation depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yildirim I et al (2016) Characterization of a terahertz wave scanned imaging system for threat detection at standoff distances. Opt Quantum Electron 48(7):367

    Article  Google Scholar 

  2. Akram M et al (2020) Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv Mater 32(12):1907308

    Article  CAS  Google Scholar 

  3. Muthukrishnan K et al (2021) Multiband terahertz metamaterial absorber based on multipolar plasmonic resonances. Plasmonics 16(4):1049–1057

    Article  CAS  Google Scholar 

  4. He X et al (2022) Multidimensional manipulation of broadband absorption with dual-controlled terahertz metamaterial absorbers. Diam Relat Mater 125:108977

    Article  CAS  Google Scholar 

  5. Meng H et al (2017) Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region. Appl Opt 56(21):6022–6027

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y et al (2020) Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave. Carbon 163:244–252

    Article  CAS  Google Scholar 

  7. Stantchev R et al (2017) Compressed sensing with near-field THz radiation. Optica 4(8):989–992

    Article  CAS  Google Scholar 

  8. Pitchappa P et al (2021) Electromechanically tunable frequency-agile metamaterial bandpass filters for terahertz waves. Adv Opt Mater 10(2):2101544

    Article  Google Scholar 

  9. Yi Z et al (2019) Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results Phys 14:102367

    Article  Google Scholar 

  10. Nguyen T et al (2018) Angle-and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators. Appl Phys Lett 112(2):021605

    Article  Google Scholar 

  11. Qu M et al (2020) Design of graphene-based dual-polarized switchable rasorber/absorber at terahertz. IEEE Access 8:127220–127225

    Article  Google Scholar 

  12. Xiong H et al (2018) Ultra-thin and broadband tunable metamaterial graphene absorber. Opt Express 26(2):1681–1688

    Article  CAS  PubMed  Google Scholar 

  13. Rahmanzadeh M et al (2018) Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers. Appl Opt 57(4):959–968

    Article  CAS  PubMed  Google Scholar 

  14. Guo W et al (2016) Ultra-broadband infrared metasurface absorber. Opt Express 24(18):20586–20592

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Y et al (2021) An ultra-wideband and wide-angle optically transparent flexible microwave metamaterial absorber. J Phys D Appl Phys 54(27):275101

    Article  CAS  Google Scholar 

  16. Zhang C et al (2021) Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Opt Express 29(9):14078–14086

    Article  CAS  Google Scholar 

  17. Bai J et al (2021) A non-volatile tunable terahertz metamaterial absorber using graphene floating gate. Micromachines 12(3):333

    Article  PubMed  Google Scholar 

  18. Wang J et al (2021) Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials 11(5):1110

    Article  CAS  PubMed Central  Google Scholar 

  19. Zang X et al (2018) Dual-band superposition induced broadband terahertz linear-to-circular polarization converter. J Opt Soc Am A 35(4):950–957

    Article  CAS  Google Scholar 

  20. Luo Y et al (2020) Ultra-broadband metamaterial absorber in long wavelength Infrared band based on resonant cavity modes. Opt Commun 459:124948

    Article  CAS  Google Scholar 

  21. Kumar P et al (2019) Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption. J Opt Soc Am B 36(7):1914

  22. Huang X et al (2019) Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Opt Express 27(18):25902–25911

    Article  CAS  PubMed  Google Scholar 

  23. Dong Y et al (2021) Terahertz metamaterial modulator based on phase change material VO2. Symmetry-Basel 13(11):2230

    Article  CAS  Google Scholar 

  24. Wang X et al (2023) Tunable and switchable common-frequency broadband terahertz absorption, reflection and transmission based on graphene-photosensitive silicon metamaterials. Opt Commun 541:129555

  25. Jiang H et al (2022) Vanadium dioxide-based terahertz metamaterial devices switchable between transmission and absorption. Micromachines 13(5):715

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang L et al (2023) A thermally controlled multifunctional metamaterial absorber with switchable wideband absorption and transmission at THz band. Materials 16(2):846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li M (2022) Graphene integrated rasorber at terahertz frequencies with functionalities of both absorption and transmission. Results Phys 41:105959

    Article  Google Scholar 

  28. Lan G et al (2023) Enhanced asymmetric light-plasmon coupling in graphene nanoribbons for high-efficiency transmissive infrared modulation. Laser Photon Rev

  29. An Z et al (2023) High-temperature multispectral stealth metastructure from the microwave-infrared compatible design. Compos Pt B-Eng 259:110737

    Article  Google Scholar 

  30. Zhang Y et al (2023) Functional additive manufacturing of large-size metastructure with efficient electromagnetic absorption and mechanical adaptation. Compos Pt A-Appl Sci Manuf 173:107652

    Article  CAS  Google Scholar 

  31. Cai X et al (2021) Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv Photonics 3(3):036003

    Article  CAS  Google Scholar 

  32. He C et al (2022) Terahertz graphene metasurfaces for cross-polarized deflection, focusing, and orbital angular momentum. Opt Express 30(14):25498–25508

    Article  CAS  PubMed  Google Scholar 

  33. Xu J et al (2021) Graphene-based terahertz metamirror with wavefront reconfiguration. Opt Express 29(24):39574–39585

    Article  CAS  PubMed  Google Scholar 

  34. Zhang B et al (2022) Switchable and tunable bifunctional THz metamaterial absorber. J Opt Soc Am B 39(3):A52–A60

    Article  CAS  Google Scholar 

  35. Liang J et al (2016) Frequency tunable perfect absorber in visible and near-infrared regimes based on VO2 phase transition using planar layered thin films. J Opt Soc Am B 33(6):1075–1080

    Article  CAS  Google Scholar 

  36. Liu W et al (2021) Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide. Opt Express 29(15):23331–23340

    Article  CAS  PubMed  Google Scholar 

  37. Liu H et al (2021) Switchable and dual-tunable multilayered terahertz absorber based on patterned graphene and vanadium dioxide. Micromachines 12(6):619

    Article  PubMed  PubMed Central  Google Scholar 

  38. Biabanifard M et al (2018) Circuit modeling of tunable terahertz graphene absorber. Optik 158:842–849

    Article  CAS  Google Scholar 

  39. Wang R et al (2023) A switchable terahertz metamaterial absorber between ultra-broadband and dual bands. Front Phys 11:1227013

    Article  Google Scholar 

  40. Zhou Q et al (2018) Graphene based controllable broadband terahertz metamaterial absorber with transmission band. Materials 11(12):2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu Y et al (2021) Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene. Opt Express 29(13):20839–20850

    Article  CAS  PubMed  Google Scholar 

  42. Zhuang S et al (2022) Graphene-based absorption–transmission multi-functional tunable THz metamaterials. Micromachines 13(8):1239

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu G et al (2021) Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt Express 29(2):2703–2711

    Article  CAS  PubMed  Google Scholar 

  44. Ghosh S et al (2022) Graphene-based metasurface for tunable absorption and transmission characteristics in the near mid-infrared region. IEEE Trans Antennas Propag 70(6):4600–4612

    Article  Google Scholar 

  45. Wang Q et al (2023) Optically reconfigurable THz metamaterial with switchable wideband absorption and transmission. Photonics 10:1253

    Article  Google Scholar 

  46. Zheng P et al (2023) Active thermally tunable and highly sensitive terahertz smart windows based on the combination of a metamaterial and phase change material. Dalton Trans 52(24):8294–8301

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (62075052), the Natural Science Foundation of Heilongjiang Province (LH2019F022), and the Talents Project of Harbin Science and Technology Innovation (2016RAQXJ025).

Author information

Authors and Affiliations

Authors

Contributions

Ying Zhang conceived and coordinated the project. Ying Zhang was responsible for the infrastructure and project direction. Yupei Tang conducted the theoretical calculations. You Li, Yupei Tang and Xunjun He contributed to data analysis, and interpretation. Yupei Tang and Ying Zhang wrote the manuscript. All authors contributed to the general discussion, and agreed to the final version.

Corresponding author

Correspondence to Ying Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tang, Y., Li, Y. et al. A Multifunctional Metamaterial Device with Tunable Broadband Absorption and Transmission Characteristics in the Terahertz Region. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02138-8

Keywords

Navigation