Skip to main content
Log in

Broadband Polarization Beam Splitter Based on Silicon Dual-Core Photonic Crystal Fiber with Gold Layers Operating in Mid-Infrared Band

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In response to the immediate requirements of modern high-speed and high-capacity integrated optical circuit development, this study introduces a broadband all-fiber polarization beam splitter (PBS) based on silicon dual-core photonic crystal fiber (PCF) and gold layers. Simulation results demonstrate that silicon as the substrate material is conducive to extending the operating range to the mid-infrared band of 3.0 ~ 3.6 μm. The modulation effect of the gold ring layers on the left and right sides of central elliptical hole is very impressive, and when the cladding hole diameter d1 = 1.3 μm, gold-coated hole diameter d2 = 1.8 d1 = 2.34 μm, hole-to-hole pitch Λ = 2.0 μm, gold layer thickness t = 50 nm, long axis a = 2.08 μm, and short axis b = 1.43 μm, coupling length ratio (CLR) between x- and y-polarized super-mode exactly is equal to 2. According to performance investigation by finite element method (FEM), this PBS is well suited for splitting out x-polarized light in core A, which can possess a minimum size of 0.66 mm, a maximum extinction ratio (ER) of 78 dB at 3.3 μm, a broad operating bandwidth of 450 nm, and a low insertion loss (IL) of 0.15 dB at 3.3 μm simultaneously. The proposed PBS features both high integration and high performance, which will be applicable to all-optical networks in mid-infrared fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This work is a theoretical work, and we used COMSOL software to obtain all simulation data. The programs used, the procedures followed, and the data generated for this work can be available on request from the corresponding author, whose email address indicated at the first page of this manuscript.

References

  1. Dalenogare L S, Benitez G B, Ayala N F et al (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econo 204:383–394

  2. Puttnam BJ, Rademacher G, Luís RS (2021) Space-division multiplexing for optical fiber communications. Optica 8(9):1186–1203

    Article  CAS  Google Scholar 

  3. Winzer PJ (2014) Making spatial multiplexing a reality. Nat Photonics 8(5):345–348

    Article  CAS  Google Scholar 

  4. Jiao H, Feng L, Wang J et al (2017) Transmissive single-beam-splitter resonator optic gyro based on a hollow-core photonic-crystal fiber. Opt Lett 42(15):3016–3019

    Article  PubMed  Google Scholar 

  5. Watts MR, Haus HA, Ippen EP (2005) Integrated mode-evolution-based polarization splitter. Opt Lett 30(9):967–969

    Article  CAS  PubMed  Google Scholar 

  6. Kwon DH, Werner DH (2008) Polarization splitter and polarization rotator designs based on transformation optics. Opt Express 16(23):18731–18738

    Article  PubMed  Google Scholar 

  7. Goossens JW, Yousefi MI, Jaouën Y et al (2017) Polarization-division multiplexing based on the nonlinear Fourier transform. Opt Express 25(22):26437–26452

    Article  PubMed  Google Scholar 

  8. Wang B, Dong F, Feng H et al (2017) Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces. ACS Photonics 5(5):1660–1664

    Article  Google Scholar 

  9. Akca BI, Považay B, Alex A et al (2013) Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip. Opt Express 21(14):16648–16656

    Article  CAS  PubMed  Google Scholar 

  10. Khorasaninejad M, Zhu W, Crozier KB (2015) Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2(4):376–382

    Article  CAS  Google Scholar 

  11. Zabelin V, Dunbar LA, Le Thomas N et al (2007) Self-collimating photonic crystal polarization beam splitter. Opt Lett 32(5):530–532

    Article  CAS  PubMed  Google Scholar 

  12. Zhou X, Qiu M, Qian Y et al (2020) Microfiber-based polarization beam splitter and its application for passively mode-locked all-fiber laser. IEEE J Sel Top Quantum Electron 27(2):1–6

    Google Scholar 

  13. Poberaj G, Hu H, Sohler W et al (2012) Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev 6(4):488–503

    Article  CAS  Google Scholar 

  14. Russell P (2003) Photonic Crystal Fibers. Science 299(5605):358–362

    Article  CAS  PubMed  Google Scholar 

  15. Pang M, Jin W (2011) A hollow-core photonic bandgap fiber polarization controller. Opt Lett 36(1):16–18

    Article  CAS  PubMed  Google Scholar 

  16. Chen N, Zhang X, Nie F et al (2018) Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure. J Mod Opt 65(12):1459–1465

    Article  CAS  Google Scholar 

  17. Liu S, Li SG, Yin GB et al (2012) A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber. Opt Commun 285(6):1097–1102

    Article  CAS  Google Scholar 

  18. Jiang H, Wang E, Zhang J et al (2014) Polarization splitter based on dual-core photonic crystal fiber. Opt Express 22(25):30461–30466

    Article  PubMed  Google Scholar 

  19. Rajeswari D, Raja AS, Selvendran S (2017) Design and analysis of polarization splitter based on dual-core photonic crystal fiber. Optik 144:15–21

    Article  CAS  Google Scholar 

  20. Zhang Y, Liu H, Chen C et al (2020) Temperature-controlled and multi-functional splitter based on dual-core photonic crystal fiber. Results Phys 19:103578

    Article  Google Scholar 

  21. Gómez-Cardona N, Jiménez-Durango C, Usuga-Restrepo J et al (2021) Thermo-optically tunable polarization beam splitter based on selectively gold-filled dual-core photonic crystal fiber with integrated electrodes. Opt Quant Electron 53:1–15

    Article  Google Scholar 

  22. Zhang Y, Qu Y, Yuan J et al (2021) Polarization beam splitter based on the gold wire-filled dual-core photonic crystal fiber at the communication wavelengths. Fiber Integr Opt 40(1):70–83

    Article  CAS  Google Scholar 

  23. Younis BM, Hameed MFO, Obayya SSA (2021) Tunable polarization splitter based on asymmetric dual-core liquid photonic crystal fiber. Opt Quant Electron 53:1–10

    Article  Google Scholar 

  24. Hagras EAA, Hameed MFO, Obayya SSA (2022) Compact dual-core liquid crystal photonic crystal fiber polarization splitter for terahertz applications. Optik 265:169396

    Article  CAS  Google Scholar 

  25. Qu Y, Yuan J, Wang K et al (2022) Ge20Sb15Se65 glass-based ultra-bandwidth X-shaped dual-core photonic crystal fiber polarization beam splitter with an air hole filled gold rod. JOSA B 39(6):1580–1589

    Article  CAS  Google Scholar 

  26. Li D, Pu S, Li Y et al (2022) Magnetically tunable fiber polarization beam splitter. Instrum Sci Technol 50(2):132–145

    Article  CAS  Google Scholar 

  27. Xu Y, Yuan J, Li Y et al (2023) Design of an octagon structure dual-core photonic crystal fiber polarization beam splitter with a liquid crystal filled central hole. Opt Commun 546:129765

    Article  CAS  Google Scholar 

  28. Hu DJJ, Ho HP (2017) Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv Opt Photon 9(2):257–314

    Article  Google Scholar 

  29. Paul BK, Ahmed K (2020) Analysis of terahertz waveguide properties of Q-PCF based on FEM scheme. Opt Mater 100:109634

    Article  CAS  Google Scholar 

  30. Meng Y, Chen Y, Lu L et al (2021) Optical meta-waveguides for integrated photonics and beyond. Light: Sci Appl 10(1):235 

  31. Boehm J, François A, Ebendorff-Heidepriem H et al (2011) Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors. Plasmonics 6:133–136

    Article  CAS  Google Scholar 

  32. Ibrahimi KM, Kumar R, Pakhira W (2023) Enhance the design and performance analysis of a highly sensitive twin-core PCF SPR biosensor with gold plating for the early detection of cancer cells. Plasmonics 18(3):995–1006

    Article  CAS  Google Scholar 

  33. Rademacher G, Puttnam BJ, Luís RS et al (2021) Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber. Nat Commun 12(1):4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ballato J, Hawkins T, Foy P et al (2010) Advancements in semiconductor core optical fiber. Opt Fiber Technol 16(6):399–408

    Article  CAS  Google Scholar 

  35. Ren H, Shen L, Runge A F J et al (2019) Low-loss silicon core fibre platform for mid-infrared nonlinear photonics. Light: Sci Appl 8(1):105

  36. Kiyat I, Aydinli A, Dagli N (2005) A compact silicon-on-insulator polarization splitter. IEEE Photonics Technol Lett 17(1):100–102

    Article  CAS  Google Scholar 

  37. Yu YL, Kishikawa H, Liaw SK et al (2021) Broadband silicon core photonics crystal fiber polarization filter based on surface plasmon resonance effect. Opt Commun 482:126587

    Article  CAS  Google Scholar 

  38. Chen N, Zhang X, Chang M et al (2020) Broadband plasmonic polarization filter based on photonic crystal fiber with dual-ring gold layer. Micromachines 11(5):470

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fan Z, Li S, Liu Q et al (2016) Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires. Plasmonics 11:1565–1572

    Article  CAS  Google Scholar 

  40. Huang J, Yang J, Chen D et al (2018) Ultra-compact broadband polarization beam splitter with strong expansibility. Photonics Res 6(6):574–578

    Article  CAS  Google Scholar 

  41. Zhao Y, Li S, Wang X et al (2017) Design of a novel multi-channel photonic crystal fiber polarization beam splitter. Opt Commun 400:79–83

    Article  CAS  Google Scholar 

  42. Liu Q, Li SG, Fan ZK et al (2015) Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber. Opt Commun 334:46–50

    Article  CAS  Google Scholar 

  43. Sun B, Chen MY, Zhou J et al (2013) Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire. Plasmonics 8:1253–1258

    Article  CAS  Google Scholar 

  44. Su Y, Qin M, Ouyang M et al (2023) Compact topological polarization beam splitter based on all-dielectric fishnet photonic crystals. Opt Lett 48(12):3171–3174

    Article  CAS  PubMed  Google Scholar 

  45. Zi J, Li S, An G et al (2016) Short-length polarization splitter based on dual-core photonic crystal fiber with hexagonal lattice. Opt Commun 363:80–84

    Article  CAS  Google Scholar 

  46. Debevc A, Topič M, Krč J (2022) High extinction ratio and an ultra-broadband polarization beam splitter in silicon integrated photonics by employing an all-dielectric metamaterial cladding. Opt Express 30(26):46693–46709

    Article  CAS  PubMed  Google Scholar 

  47. Qu Y, Yuan J, Qiu S et al (2021) A novel gold film-coated V-shape dual-core photonic crystal fiber polarization beam splitter covering the E+ S+ C+ L+ U band. Sensors 21(2):496

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Pei L, Weng S et al (2017) Magneto-modulating polarization converter based on a dual-core photonic crystal fiber. J Lightwave Technol 35(14):2772–2777

    Article  CAS  Google Scholar 

  49. Feng X, Du H, Li S et al (2018) A polarization filter based on photonic crystal fiber with symmetry around gold-coated holes. Plasmonics 13:1271–1275

    Article  CAS  Google Scholar 

  50. Chaudhary VS, Kumar D, Kumar S (2021) Gold-immobilized photonic crystal fiber-based SPR biosensor for detection of malaria disease in human body. IEEE Sens J 21(16):17800–17807

    Article  CAS  Google Scholar 

  51. Ling-Hong J, Yi Z, Lan-Tian H et al (2014) Design of highly birefringent SF57 soft glass PCF with low effective mode area. J Infrared Millim Waves 33(3):222–226

    Google Scholar 

  52. Qu Y, Yuan J, Zhou X et al (2020) Surface plasmon resonance-based silicon dual-core photonic crystal fiber polarization beam splitter at the mid-infrared spectral region. JOSA B 37(8):2221–2230

    Article  CAS  Google Scholar 

  53. Úsuga-Restrepo JE, Guimarães WM, Franco MAR (2020) All-fiber circular polarization beam splitter based on helically twisted twin-core photonic crystal fiber coupler. Opt Fiber Technol 58:102285

    Article  Google Scholar 

  54. An S, Lv J, Yi Z et al (2021) Ultra-short and dual-core photonic crystal fiber polarization splitter composed of metal and gallium arsenide. Optik 226:165779

    Article  CAS  Google Scholar 

  55. Qu Y, Yuan J, Qiu S et al (2021) Simple structure dual-core photonic crystal fiber polarization beam splitter covering the O+ E+ S+ C+ L+ U band based on the surface plasmon resonance effect. JOSA B 38(12):F50–F60

    Article  Google Scholar 

  56. Bai Y, Hao R, Yuan B et al (2021) An ultrashort length and high extinction ratio polarization beam splitter based on dual-core PCF. J Opt 50:257–263

    Article  Google Scholar 

  57. Wang K, Qu Y, Yuan J et al (2021) Ultra-short polarization beam splitter based on dual-core photonic crystal fiber with surface plasmon resonance effect. Opt Eng 60(7):076104–076104

    Article  CAS  Google Scholar 

  58. Revathi AA, Rajeswari D (2022) Design of polarization splitter based on dual-core surface plasmon resonance photonic crystal fiber. Eur Phys J D 76(7):117

    Article  CAS  Google Scholar 

  59. Mei C, Wu Y, Yuan J et al (2022) Design of compact and broadband polarization beam splitters based on surface plasmonic resonance in photonic crystal fibers. Micromachines 13(10):1663

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu Y, Yuan J, Qu Y et al (2022) Design of a compressed hexagonal dual-core photonic crystal fiber polarization beam splitter with a liquid crystal filled air hole. Opt Eng 61(5):057104–057104

    Article  CAS  Google Scholar 

  61. Xu Y, Yuan J, Qu Y et al (2023) Ultra-short polarization beam splitter based on rhombic structure dual-core photonic crystal fiber with a central hole filled nematic liquid crystal. JOSA B 40(1):206–214

    Article  CAS  Google Scholar 

  62. Yu C, Ganjoo A, Jain H et al (2006) Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films. Anal Chem 78(8):2500–2506

    Article  CAS  PubMed  Google Scholar 

  63. Oliver KV, Vilasi A, Marechal A et al (2016) Infrared vibrational spectroscopy: a rapid and novel diagnostic and monitoring tool for cystinuria. Sci Rep 6(6):34737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chang YC, Wagli P, Paeder V et al (2012) Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip 12(17):3020–3023

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61973178), the Smart Grid Joint Fund of State Key Program of National Natural Science Foundation of China (Grant No. U2066203), and the Major natural science projects of colleges and universities in Jiangsu Province (Grant No. 21KJA470006).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Nan Chen Xin Ding and Luyao Wang; methodology, Nan Chen; software, Yunpeng Xiao and Wenhui Guo; validation, Nan Chen and Yiming Xu; formal analysis, Yanming Huang and Luhao Guo; investigation, Chenxun Liu; resources, Yiming Xu; data curation, Nan Chen; writing original draft preparation, Nan Chen; writing—review and editing, Xin Ding; visualization, Luyao Wang and Nan Chen; supervision, Yiming Xu; project administration, Yiming Xu; funding acquisition, Yiming Xu. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Nan Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Ding, X., Wang, L. et al. Broadband Polarization Beam Splitter Based on Silicon Dual-Core Photonic Crystal Fiber with Gold Layers Operating in Mid-Infrared Band. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02117-z

Keywords

Navigation