Skip to main content
Log in

Ultrahigh Sensitivity Refractive Index Sensor Based on Surface Plasmon Resonance Effect of Double-Ring Hollow-Core Anti-Resonant Fiber

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a refractive index (RI) sensor is presented on the basis of the surface plasmon resonance (SPR) effect of double-ring hollow-core anti-resonant fiber (DR-HC-ARF), which has great sensitivity and wide detection range. In the design, the DR-HC-ARF consists of 12 silica tubes in two layers inside and outside, with the X-forward inner silica tube filled with gold wire. The simulation results indicated that the achievable maximum sensitivity, minimum resolution, and largest figure of merit of the DR-HC-ARF sensor filled with gold wire are −20600 nm/RIU, 4.85 × 10−6 RIU, and 615.79 RIU−1, respectively, when measuring using the confinement loss approach. The maximum sensitivity, minimum resolution, and largest birefringence of the DR-HC-ARF sensor filled with gold wire are −21200 nm/RIU, 4.71 × 10−6 RIU, and 2.38 × 10−4, respectively, for the birefringence analysis approach. The ultrahigh RI sensitivity of DR-HC-ARF sensor filled with gold wire paves a promising way on the applications in the field of biochemical detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data and code of this work will be available from the corresponding author upon reasonable request.

References

  1. Debord B, Amsanpally A, Chafer M et al (2017) Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica 4(2):209–217

  2. Wang Y, Hasan MI, Hassan MRA, Chang W (2020) Effect of the second ring of anti-resonant tubes in negative-curvature fibers. Opt Express 28(2):1168–1176

    Article  CAS  PubMed  Google Scholar 

  3. Nawazuddin MB, Wheeler NV, Hayes JR et al (2018) Lotus-shaped negative curvature hollow core fiber with 10.5 dB/km at 1550 nm wavelength. J Light Technol 36(5):1213–1219

    Article  CAS  Google Scholar 

  4. Chaudhuri S, Van Putten LD, Poletti F, Sazio PJA (2016) Low loss transmission in negative curvature optical fibers with elliptical capillary tubes. J Light Technol 34(18):4228–4231

    Article  Google Scholar 

  5. Yao C, Wang Q, Lin Y et al (2019) Photothermal CO detection in a hollow-core negative curvature fiber. Opt Lett 44(16):4048–4051

    Article  CAS  PubMed  Google Scholar 

  6. Wei C, Young JT, Menyuk CR, Hu J (2019) Temperature sensor based on liquid-filled negative curvature optical fibers. OSA Continuum 2(7):2123–2130

  7. Zhang N, Shi XL, Wang TT et al (2017) Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China. Energy 134:504–514

    Article  Google Scholar 

  8. Li L, Xiao L (2019) Plasmonic nodeless hollow-core photonic crystal fibers for in-fiber polarizers. J Light Technol 37(20):5199–5211

    Article  CAS  Google Scholar 

  9. Huang T (2016) Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics. 12(3):583–588

    Article  Google Scholar 

  10. Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H, Qi Y (2019) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer. Chin Phys B 28(4):044201

  11. Li T, Zhu L, Yang X, Lou X, Yu L (2020) A RI sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors (Basel) 20(3):741

  12. Liu C, Wang J, Wang F, Su W, Yang L, Lv J, Fu G, Li X, Liu Q, Sun T, Chu PK (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt Comm 464:125496

  13. Dash JN, Das R, Jha R (2018) AZO coated microchannel incorporated PCF-based SPR sensor: a numerical analysis. IEEE Photon Technol Lett 30(11):1032–1035

    Article  CAS  Google Scholar 

  14. Jiao S, Gu S, Fang H, Yang H (2018) Analysis of dual-core photonic crystal fiber based on surface plasmon resonance sensor with segmented silver film. Plasmonics. 14(3):685–693

    Article  Google Scholar 

  15. Esfahani Monfared Y (2019) RI sensor based on surface plasmon resonance excitation in a D-shaped photonic crystal fiber coated by titanium nitride. Plasmonics. 15(2):535–542

    Article  Google Scholar 

  16. Liu M, Yang X, Shum P et al (2018) High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance. Appl Opt 57(8):1883–1886

    Article  CAS  PubMed  Google Scholar 

  17. Fu Y, Liu M, Shum P et al (2020) An ultrahigh sensitive photonic crystal fiber based surface plasmon resonance sensor. Optik 212:164649

  18. Fu Y, Liu M, Shum P et al (2022) PCF based surface plasmon resonance temperature sensor with ultrahigh sensitivity. Optik 250:168345

  19. Fu EY, Liu M, Shum P, Chu L (2020) An ultrahighly sensitive photonic crystal fiber based surface plasmon resonance sensor. Optik 212:164649

  20. Shafkat A (2020) Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber. Sens Bio-Sens Res 28:168345

  21. Rifat AA, Mahdiraji GA, Sua YM, Ahmed R, Shee YG, Adikan FR (2016) Highly sensitive multi-core flat fiber surface plasmon resonance RI sensor. Opt Express 24(3):2485–95

    Article  CAS  PubMed  Google Scholar 

  22. Chu S, Nakkeeran K, Abobaker AM, Aphale SS, Babu PR, Senthilnathan K (2019) Design and analysis of surface-plasmon-resonance-based photonic quasi-crystal fiber biosensor for high-refractive-index liquid analytes. IEEE J Sel Top Quantum Electron 25(2):1–9

    Google Scholar 

  23. Poletti F (2014) Nested antiresonant nodeless hollow core fiber. Opt Express 22(20):23807–28

    Article  PubMed  Google Scholar 

  24. Sakr H, Chen Y, Jasion GT et al (2020) Hollow core optical fibers with comparable attenuation to silica fibers between 600 and 1100 nm. Nat Commun 11(1):6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang H, Wei C, Wang D, Yuan L, Jiao S, Bao Z, Yang H (2020) Research on photonic crystal fiber based on a surface plasmon resonance sensor with segmented silver-titanium dioxide film. J Opt Soc Am B 37(3):736–744

  26. Liu C, Su W, Wang F, Li X, Liu Q, Mu H, Sun T, Chu PK, Liu B (2018) Birefringent PCF-based SPR sensor for a broad range of low RI detection. IEEE Photon Technol Lett 30(16):1471–1474

    Article  CAS  Google Scholar 

  27. Qiu S, Yuan J, Zhou X, Li F, Wang Q, Qu Y, Yan B, Wu Q, Wang K, Sang X, Long K, Yu C (2020) Hollow-core negative curvature fiber with high birefringence for low RI sensing based on surface plasmon resonance effect. Sensors (Basel) 20(22):6539

  28. An G, Jia P, Liang T, Hong Y, Wang H, Ghaffar A, Xiong J (2020) Double-sided polished ultra-stable and ultra-sensitive optical fiber sensor. Plasmonics 15(5):1471–1479

    Article  CAS  Google Scholar 

  29. Arunya Revathi A, Rajeswari D (2020) Surface plasmon resonance biosensor-based dual-core photonic crystal fiber: design and analysis. J Opt 49(2):163–167

    Article  Google Scholar 

  30. Biplob Hossain M, Riazul Islam SM, Tasrif Hossain KM, Faisal Abdulrazak L, Nazmus Sakib M, Amiri IS (2020) High sensitivity hollow core circular shaped PCF surface plasmonic biosensor employing silver coat: a numerical design and analysis with external sensing approach. Res Phys 16:102909

  31. Jasion GT, Hayes JR, Wheeler NV et al (2019) Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. Opt Express 27(15):20567–20582

    Article  CAS  PubMed  Google Scholar 

  32. Pryamikov AD, Biriukov AS, Kosolapov AF, Plotnichenko VG, Semjonov SL (2011) Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 mum. Opt Express 19(2):1441–1448

  33. Yu F, Knight JC (2016) Negative curvature hollow-core optical fiber. IEEE J Select Top Quantum Electron 22(2):146–155

    Article  Google Scholar 

  34. Lee HW, Schmidt MA, Russell RF, Joly NY, Tyagi HK, Uebel P, Russell PS (2011) Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt Express 19(13):12180–9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (62105373, 62171487);Knowledge Innovation Program of Wuhan-Shuguang Project (2022010801020408); Fundamental Research Funds for the Central Universities of the South-Central MinZu University (CZZ22001).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have significant contribution in this paper.

Corresponding author

Correspondence to Wenjun Ni.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Leng, X., Ni, W. et al. Ultrahigh Sensitivity Refractive Index Sensor Based on Surface Plasmon Resonance Effect of Double-Ring Hollow-Core Anti-Resonant Fiber. Plasmonics 19, 1475–1485 (2024). https://doi.org/10.1007/s11468-023-02069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02069-4

Keywords

Navigation