Skip to main content
Log in

Hybrid Structure–Based SPR Sensor for Chemical Sensing with Enhanced Sensitivity

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a new multilayer structure and investigated its performance as a chemical sensor utilizing surface plasmon resonance. Our proposed design consists of a black phosphorus layer sandwiched between a metal layer and a graphene layer, blue phosphorene/MoS2 heterostructure layers placed over it, and the sensing layer containing the analyte placed on top. A CaF2 prism in the Kretschmann configuration is employed to excite surface plasmon resonance (SPR), and the angle interrogation method is used for analysis. Sellmeier equations calculate the reflectivity and other parameters of the multilayer design. We also study the effect of the combination of BP and metal interlayer. Analysis of the proposed design shows significantly improved sensitivity compared to recent SPR-based sensors. In this paper, the sensitivity of 466°/RIU is obtained with silver metal, BP, graphene, and BlueP/MoS2 layers SPR sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

The datasets examined for the current investigation are included in this paper

References

  1. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216(4):398–410

    Article  CAS  Google Scholar 

  2. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12):2135–2136

    Article  CAS  Google Scholar 

  3. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuators, B Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  4. Raether H (1988) Surface plasmons on smooth surfaces, in surface plasmons on slick and rough surfaces and on ratings. Springer, pp. 4–39

  5. Akimov Y (2018) Optical resonances in Kretschmann and Otto configurations. Opt Lett 43(6):1195–1198

    Article  CAS  PubMed  Google Scholar 

  6. Barchiesi D, Grosges T, Colas F, de La Chapelle ML (2015) Combined SPR and SERS: Otto and Kretschmann configurations. J Opt 17(11):114009

    Article  Google Scholar 

  7. Lin Z, Jiang L, Leiming Wu, Guo J, Dai X, Xiang Y, Fan D (2016) Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS 2-Au films. IEEE Photonics J 8(6):1–8

    Article  Google Scholar 

  8. Mishra AK, Mishra SK, Verma RK (2015) An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J Phys D Appl Phys 48(43):435502

    Article  Google Scholar 

  9. Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance-based biomolecules sensor using graphene and silicon layers. Sens Actuators B Chem 60(1):623–631

    Article  Google Scholar 

  10. Chu P, Chen J, Xiong Z, Yi Z (2020) Controllable frequency conversion in the coupled time-modulated cavities with phase delay. Opt Commun

  11. Li K, Li L, Xu N, Peng X, Zhou Y, Yuan Y, Qu J (2020) Ultrasensitive surface plasmon resonance biosensor using blue phosphorus–graphene architecture. Sensors 20(11):3326. https://doi.org/10.3390/s20113326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma AK, Pandey AK (2018) Blue phosphorene/MoS2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photon Technol Lett pp 1–1. https://doi.org/10.1109/LPT.2018.2803747

  13. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics 16(5):1781–1790

    Article  CAS  Google Scholar 

  14. Wu L, Guo J, Wang Q, Lu S, Dai X, Xiang Y, Fan D (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens Actuators, B Chem 249:542–548

    Article  CAS  Google Scholar 

  15. Bruna M, Borini SJAPL (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):031901

    Article  Google Scholar 

  16. Alagdar M, Yousif B, Areed NF, Elzalabani M (2020) Improved the quality factor and sensitivity of a surface plasmon resonance sensor with transition metal dichalcogenide 2D nanomaterials. J Nanopart Res 22:1–13

    Article  Google Scholar 

  17. Alagdar M, Yousif B, Areed NF, Elzalabani M (2020) Highly sensitive fiber optic surface plasmon resonance sensor employing 2D nanomaterials. Appl Phys A 126:1–16

    Article  Google Scholar 

  18. Wu L, Jia Y, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2017) Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J Lightwave Technol 35(1):82–87

    Article  CAS  Google Scholar 

  19. Ouyang Q, Zeng S, Dinh XQ, Coquet P, Yong KT (2016) Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Eng 140:134–139

    Article  CAS  Google Scholar 

  20. Raghuwanshi SK, Kumar M (2018) Highly dispersion tailored property of novel class of multimode surface plasmon resonance biosensor assisted by teflon and metamaterial layers. IEEE Trans Instrum Meas 68(8):2954–2963

    Article  Google Scholar 

  21. Srivastava A, Prajapati YK (2019) Performance analysis of silicon and blue phosphorene/MoS2 hetero-structure based SPR sensor. Photonic Sensors 9(3):284–292

    Article  CAS  Google Scholar 

  22. Aksimsek S, Jussila H, Sun Z (2018) Graphene–MoS2–metal hybrid structures for plasmonic biosensors. Opt Commun 428:233–239

    Article  CAS  Google Scholar 

  23. Singh Y, Raghuwanshi SK (2019) Sensitivity enhancement of the surface plasmon resonance gas sensor with black phosphorus. IEEE Sensors Letters 3(12):1–4

    Article  CAS  Google Scholar 

  24. Meshginqalam B, Barvestani J (2018) Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridisation. IEEE Sens J 18(18):7537–7543

    Article  CAS  Google Scholar 

  25. Panda A, Pukhrambam PD (2021) Modeling of high-performance spr refractive index sensor employing novel 2d materials for detection of malaria pathogens. IEEE Trans Nanobiosci 21(2):312–319

    Article  Google Scholar 

  26. Hasib MHH, Nur JN, Rizal C, Shushama KN (2019) Improved transition metal dichalcogenides-based surface plasmon resonance biosensors. Condens Matter 4(2):49

    Article  CAS  Google Scholar 

  27. Pandey PS, Raghuwanshi SK, Kumar S (2021) Recent advances in two-dimensional materials-based Kretschmann configuration for SPR sensors: a review. IEEE Sens J

  28. Yadav A, Kumar A, Sharan P (2022) Sensitivity enhancement of a plasmonic biosensor for urine glucose detection by employing black phosphorous. JOSA B 39(1):200–206

    Article  CAS  Google Scholar 

  29. Sharma AK, Dominic A, Kaur B, Popescu VA (2019) Fluoride fiber sensor with huge performance enhancement via optimum radiative damping at Ag–Al2O3–Graphene heterojunction on silicon. J Lightwave Technol 37(22):5641–5646

    Article  CAS  Google Scholar 

  30. Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim YJ, Gorbachev RV, Georgiou T, Morozov SV, Grigorenko AN (2013) Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138):1311–1314

    Article  CAS  PubMed  Google Scholar 

  31. Novoselov KS, Mishchenko OA, Carvalho OA, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353(6298):aac9439

  32. Kaur B, Kumar S, Kaushik BK (2021) 2D materials-based fiber optic SPR biosensor for cancer detection at 1550 nm. IEEE Sens J 21(21):23957–23964

    Article  CAS  Google Scholar 

  33. Kedenburg S, Vieweg M, Gissibl T, Giessen H (2012) Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt Mater Express 2(11):1588–1611

    Article  CAS  Google Scholar 

  34. Yadav A, Kumar S, Kumar A, Sharan P (2023) Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection. Front Mater 9:1106251

    Article  Google Scholar 

  35. Rangappa KS (1947) Studies on the refractive index of milk: II. Some factors affecting the refractive index and refractive constant of milk. In Proceedings of the Indian Academy of Sciences-Section B 26:125–135. Springer India

  36. Peng Q, Wang Z, Sa B, Wu B, Sun Z (2016) Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep 6(1):1–10

    Google Scholar 

  37. Meng QQ, Zhao X, Lin CY, Chen SJ, Ding YC, Chen ZY (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors 17(8):1846

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ge D, Zhou Y, Shi J, Zhang L, Zhu S (2022) Highly sensitive refractive index sensor based on Bloch surface waves with lithium niobate film. Appl Phys A 128(1):1–7.0

  39. Yadav A, Kumar A, Sharan P, Mishra M (2023) Highly sensitive bimetallic-metal nitride SPR biosensor for urine glucose detection. IEEE Trans NanoBioscience

  40. Shalabney A, Abdulhalim I (2010) Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens Actuators, A 159(1):24–32

    Article  CAS  Google Scholar 

  41. Karki B, Sharma S, Singh Y, Pal A (2021) Sensitivity enhancement of surface plasmon resonance biosensor with 2-D franckeite nanosheets. Plasmonics 1–8

  42. Yadav A, Sudhanva S, Sharan P, Kumar A (2021) Modeling, simulation and computational analysis of plasmonic optical sensor using BaTiO 3 in diabetes mellitus. Int J Inf Technol 13:2163–2168

    Google Scholar 

Download references

Acknowledgements

The work has been partially supported by the Core Research Grant (CRG) Scheme of DST-SERB project (File No CRG/2020/002966). Dr Rikmantra Basu, the principal investigator, is thankful to DST-SERB (CRG scheme 2021), India, for necessary support.

Author information

Authors and Affiliations

Authors

Contributions

Mohan Kumar Paswan: conceptualization, methodology, data curation, validation, investigation, prepared all figures, tables, Results, writing — original draft. Rikmantra Basu: supervision, project administration, writing — review and editing.

Corresponding author

Correspondence to Mohan Kumar Paswan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paswan, M.K., Basu, R. Hybrid Structure–Based SPR Sensor for Chemical Sensing with Enhanced Sensitivity. Plasmonics 19, 765–776 (2024). https://doi.org/10.1007/s11468-023-02020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02020-7

Keywords

Navigation