Skip to main content
Log in

Quality Enhancement of Fiber Optic Surface Plasmon Resonance Biosensor Consisting of Metal and Barium Titanate Layer by Using Aluminum Alloy in Medical Applications

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Detection of water impurities is an important issue in many applications, especially in the medical field. In this paper, a fiber optic sensor based on surface plasmon resonance has been numerically simulated and is used for detecting 10% glucose (called dextrose 10%). This sensor consists of two layers, the first layer is metal such as cobalt, nickel, platinum, and silver and the second layer is barium titanate. The sensor performance parameters were calculated using the normalized transmitted power in three different values of 300, 600, and 900 microns of fiber core diameter. Ag/BaTiO3 with 900 microns fiber core is the most qualified structure. In the second part of the research, the effect of aluminum–silver alloy has been investigated to enhance the quality factor of Ag/BaTiO3. The combination ratio of Ag–Al (0.1:0.9) was the best choice to increase the quality factor of the sensor from 62.46 (RIU-1) to 88.0 (RIU-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Nehme Z, Cudini D (2009) “A review of the efficacy of 10% dextrose as an alternative to high concentration glucose in the treatment of out-of-hospital hypoglycaemia. J Emerg Prim Heal Care 7(3). https://doi.org/10.33151/ajp.7.3.177

  2. Moore C, Woollard M (2005) Dextrose 10% or 50% in the treatment of hypoglycaemia out of hospital? A randomised controlled trial. Emerg Med J 22(7):512–515. https://doi.org/10.1136/emj.2004.020693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wongtanasarasin W, Phinyo P (2023) Dextrose administration and resuscitation outcomes in patients with blood sugar less than 150 mg/dL during cardiopulmonary resuscitation: an observational data analysis. J Clin Med 12(2):1–10. https://doi.org/10.3390/jcm12020460

    Article  CAS  Google Scholar 

  4. Dostálek J, Kasry A, Knoll W (2007) Long range surface plasmons for observation of biomolecular binding events at metallic surfaces. Plasmonics. https://doi.org/10.1007/s11468-007-9037-8

    Article  Google Scholar 

  5. Sharma N, Joy A, Mishra AK, Verma RK (2015) Fuchs Sondheimer-Drude Lorentz model and Drude model in the study of SPR based optical sensors: a theoretical study. Opt Commun. https://doi.org/10.1016/j.optcom.2015.08.092

    Article  Google Scholar 

  6. Karki B, Jha A, Pal A, Srivastava V (2022) Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt Quantum Electron 54. https://doi.org/10.1007/s11082-022-04004-z

  7. Karki B, Ramya KC, Sandhya Devi RS, Srivastava V, Pal A (2022) Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: numerical analysis. Opt Quantum Electron. https://doi.org/10.1007/s11082-022-03875-6

  8. Karki B, Vasudevan B, Uniyal A, Pal A, Srivastava V (2022) Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik (Stuttg) 270. https://doi.org/10.1016/j.ijleo.2022.169947

  9. Karki B, Salah NH, Srivastava G, Muduli A, Yadav RB (2023) A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide. https://doi.org/10.1007/s11468-023-01907-9

  10. Karki B, Uniyal A, Pal A, Srivastava V (2022) Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int J Opt  2022. https://doi.org/10.1155/2022/1476254

  11. Singh TI, Singh P, Karki B (2023) Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics 18(3):1173–1180. https://doi.org/10.1007/s11468-023-01840-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu H, Zhang S, Chen H, Weng J (2015) Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens J. https://doi.org/10.1109/JSEN.2015.2442276

    Article  Google Scholar 

  13. Kretschmann E (1971) Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen. Zeitschrift für Phys. https://doi.org/10.1007/BF01395428

    Article  Google Scholar 

  14. Karki B, Ansari G, Uniyal A, Srivastava V (2023) PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor.  J Comput Electron 22:106–115 https://doi.org/10.1007/s10825-022-01975-w

  15. Socorro-Leránoz AB, Santano D, Del Villar I, Matias IR (2019) Trends in the design of wavelength-based optical fibre biosensors (2008–2018). Biosensors and Bioelectronics: X. https://doi.org/10.1016/j.biosx.2019.100015

    Article  Google Scholar 

  16. Jha R, Sharma AK (2009) High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt Lett. https://doi.org/10.1364/ol.34.000749

    Article  PubMed  Google Scholar 

  17. Karki B, Trabelsi Y, Uniyal A, Pal A (2022) Zinc sulfide, silicon dioxide, and black phosphorus based ultra-sensitive surface plasmon biosensor. Opt Quantum Electron 54. https://doi.org/10.1007/s11082-021-03480-z

  18. Nayak JK, Parhi P, Jha R (2016) Experimental and theoretical studies on localized surface plasmon resonance based fiber optic sensor using graphene oxide coated silver nanoparticles. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/49/28/285101

    Article  Google Scholar 

  19. Sharma AK, Pandey AK, Kaur B (2018) A review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt Fiber Technol. https://doi.org/10.1016/j.yofte.2018.03.008

    Article  Google Scholar 

  20. Li W, Zhang A, Cheng Q, Sun C, Li Y (2020) Theoretical analysis on SPR based optical fiber refractive index sensor with resonance wavelength covering communication C+L band. Optik (Stuttg). https://doi.org/10.1016/j.ijleo.2020.164696

    Article  Google Scholar 

  21. Sharma AK, Gupta BD (2007) On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. https://doi.org/10.1063/1.2721779

  22. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. https://doi.org/10.1016/j.snb.2004.08.030

  23. Wang Q, Niu LY, Jing JY, Zhao WM (2020) Barium titanate film based fiber optic surface plasmon sensor with high sensitivity. Opt Laser Technol 124:105899. https://doi.org/10.1016/j.optlastec.2019.105899

  24. Bureau K. Refractive indices and densities of aqueous solutions of invert sugar. Department of Commerce National Bureau of Standards. https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph64.pdf

  25. Mohammed ZH (2019) The Fresnel coefficient of thin film multilayer using transfer matrix method TMM. IOP Conf Ser Mater Sci Eng 518(3). https://doi.org/10.1088/1757-899X/518/3/032026

  26. Gouesbet G (2019) T-matrix methods for electromagnetic structured beams: a commented reference database for the period 2014–2018. 230:247–281. https://doi.org/10.1016/j.jqsrt.2019.04.004

  27. Tabassum R, Kant R (2020) Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sens Actuators B: Chem 310:127813. https://doi.org/10.1016/j.snb.2020.127813

  28. Sharma AK, Marques C (2019) Design and performance perspectives on fiber optic sensors with plasmonic nanostructures and gratings: a review. IEEE Sens J. https://doi.org/10.1109/JSEN.2019.2915274

    Article  Google Scholar 

  29. Zhou Z, Xin J, Zhang X, Wang Y, Song Y (2018) Electromagnetic modes in different topology regimes modulated by layer thickness of metal–dielectric multilayered structures based on exact transfer-matrix method. Opt Commun. https://doi.org/10.1016/j.optcom.2018.03.078

    Article  Google Scholar 

  30. Cahill ST, Bergstrom Mann PE, Worrall AF, Stewart MI (2020) Remote teaching of programming in Mathematica: lessons learned. Chem Educ. https://doi.org/10.1021/acs.jchemed.0c00684

  31. Trott M (2004) The Mathematica GuideBook for Programming, 1st ed. USA: Springer New York, NY https://doi.org/10.1007/978-1-4419-8503-3

  32. Torrence BF, Torrence EA (2019) The student’s introduction to Mathematica and the Wolfram language. Cambridge university press. https://doi.org/10.1017/9781108290937

  33. Meng QQ, Zhao X, Lin CY, Chen SJ, Ding YC, Chen ZY (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors (Switzerland). https://doi.org/10.3390/s17081846

    Article  PubMed Central  Google Scholar 

  34. Liang J et al (2016) Fabrication of crack-free barium titanate thin film with high dielectric constant using sub-micrometric scale layer-by-layer E-jet deposition. Materials (Basel) 9(1). https://doi.org/10.3390/ma9010061

  35. Chavin A, Txia Cha Heu W, Tessier PY, El Mel AA (2016) Impact of the morphology and composition on the dealloying process of co-sputtered silver–aluminum alloy thin films. Basical Solid State Phys https://doi.org/10.1002/pssb.201600604

Download references

Author information

Authors and Affiliations

Authors

Contributions

Parisa Esmailidastjerdipour and Fatemeh Shahshahani contributed to the study conception and design and write all parts together. Parisa Esmailidastjerdipour and Fatemeh Shahshahani read and approved the final manuscript.

Corresponding author

Correspondence to Parisa Esmailidastjerdipour.

Ethics declarations

Ethical Approval

This research does not include human or animal subjects.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmailidastjerdipour, P., Shahshahani, F. Quality Enhancement of Fiber Optic Surface Plasmon Resonance Biosensor Consisting of Metal and Barium Titanate Layer by Using Aluminum Alloy in Medical Applications. Plasmonics 19, 655–662 (2024). https://doi.org/10.1007/s11468-023-02013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02013-6

Keywords

Navigation