Skip to main content
Log in

TiN-based Broadband Wide-angle Solar Absorber

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Solar absorber is the key component to realize efficient utilization of solar energy. In this paper, only titanium nitride (TiN) is used to create a broadband, wide-angle, polarization insensitivity solar absorber. The average absorption of the absorber in the spectral range of 300-2500 nm is 91.3%. The distributions of electric and magnetic fields indicate that the strong absorption is caused by the coupling effect of surface plasmon resonance and guided mode resonance. Investigate the effects of the geometric parameters of the absorber on the spectral absorption performance. Moreover, we also discuss the absorption performance of the solar absorber at different incidence angles. It is demonstrated that even at a large incidence angle of 60°, the average spectral absorption can exceed more than 70%. The proposed solar energy absorber is also insensitive to polarization. The research results in this work could benefit the applications in solar thermophotovoltaic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Yao Y, Zhen S, Yang Y, Zhang M, Zhao J, Li Q (2022) Progress and prospects on solar energy resource evaluation and utilization efficiency in China. Acta Energiae Solaris Sinica 43:524

    Google Scholar 

  2. Zhang T, Wang S, Zhang X, Fu M, Yang Y, Chen W, Su D (2021) Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization. Front Chem Sci Eng 15:35–48

    Article  CAS  Google Scholar 

  3. Kumar M, Kumar A, Kumar S (2022) Photothermal conversion enhancement study of reverse irradiation-based direct absorption solar collector using Ag nanoparticles, Recent Advances in Mechanical Engineering: Select Proceedings of CAMSE 2021. Singapore: Springer Nature Singapore, 281–289

  4. Hayat M, Ali D, Monyake K, Alagha L, Ahmed N (2019) Solar energy-A look into power generation, challenges, and a solar-powered future. Int J Energy Res 43:1049–1067

    Article  Google Scholar 

  5. Song J, Han J, Choi M, Lee B (2022) Modeling and experiments of near-field thermophotovoltaic conversion: a review. Sol Energy Mater Sol Cells 238:111556

    Article  CAS  Google Scholar 

  6. Liu H, Yu K, Zhang K, Ai Q, Xie M, Wu X (2023) Pattern-free solar absorber driven by superposed fabry-perot resonances. Phys Chem Chem Phys 10628–10634

  7. Song Z, Ma G, Yi Z, Zhang J, Zhao Y (2022) Metamaterial solar absorber based on refractory metal titanium and its compound. Coatings 12:7

    Article  Google Scholar 

  8. Alkurt F, Altintas O, Ozakturk M, Karaaslan M, Akgol O, Unal E, Sabah C (2020) Enhancement of image quality by using metamaterial inspired energy harvester. Phys Lett A 384:126041

    Article  CAS  Google Scholar 

  9. Han S, Shin J, Jung P, Lee H, Lee B (2016) Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Adv Opt Mater 4:1265–1273

    Article  CAS  Google Scholar 

  10. Li Z, Stan L, Czaplewski D, Yang X, Gao J (2018) Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators. Opt Express 26:5616–5631

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Lin P, Lin Y (2021) Tunable split-disk metamaterial absorber for sensing application. Nanomaterials 11:598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Z, Cheng Y, Luo H, Chen F, Li X (2022) Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J Alloys Compd 925:166617

    Article  CAS  Google Scholar 

  13. Wu J, Huang D, Wu B, Wu X (2022) Extremely broadband light absorption by bismuth-based metamaterials involving hybrid resonances. Phys Chem Chem Phys 24:21612–21616

    Article  CAS  PubMed  Google Scholar 

  14. Lu G, Zhang K, Zhao Y, Zhang L, Shang Z, Zhou H (2021) Perfect optical absorbers by all-dielectric photonic crystal/metal heterostructures due to optical tamm state. Nanomaterials 11:3447–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu X, Wang B (2022) Metamaterial wide-angle dual-band absorber with graphene surface. Surf Interfaces 32

  16. Patel S, Parmar J, Katkar V (2022) Metasurface-based solar absorber with absorption prediction using machine learning. Opt Mater 124:112049

    Article  CAS  Google Scholar 

  17. Katrodiya D, Jani C, Sorathiya V, Patel S (2019) Metasurface based broadband solar absorber. Opt Mater 89:34–41

    Article  CAS  Google Scholar 

  18. Patel S, Udayakumar A, Mahendran G, Vasudevan B, Surve J, Parmar J (2022) Highly efficient, perfect, large angular and ultrawideband solar energy absorber for UV to MIR range. Sci Rep 12:18044–18044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Fattah H, Shazly M, Mahallawi I, Khalifa W (2019) Optical properties and microstructure of TiN thin films before and after annealing. Mater Express 15–26

  20. Li W, Guler U, Kinsey N, Naik G, Boltasseva A, Guan J, Shalaev V, Kildishev A (2014) Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv Mater 26:7959–7965

    Article  CAS  PubMed  Google Scholar 

  21. Chirumamilla M, Chirumamilla A, Yang Y, Roberts A, Kristensen P, Chaudhuri K, Boltasseva A, Sutherland D, Bozhevolnyi S, Pedersen K (2017) Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv Opt Mater 5:1700552

    Article  Google Scholar 

  22. Lei L, Li S, Huang H, Tao K, Xu P (2018) Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt Express 26:5686–5693

    Article  CAS  PubMed  Google Scholar 

  23. Sun C, Liu H, Yang B, Zhang K, Zhang B, Wu X (2023) An ultra-broadband and wide-angle absorber based on a TiN metamaterial for solar harvesting. Phys Chem Chem Phys 25:806–812

    Article  CAS  Google Scholar 

  24. Ishii S, Kamakura R, Sakamoto H, Dao TD, Shinde SL, Nagao T, Fujita K, Namura K, Suzuki M, Murai S, Tanaka K (2018) Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures. Nanoscale 18451–18456

  25. Hong X, Wang Q, Tang Z, Khan W, Zhou D, Feng T (2016) Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping. J Phys Chem C 120:148–156

    Article  CAS  Google Scholar 

  26. Zou Y, Li X, Yang L, Zhang B, Wu X (2023) Efficient direct absorption solar collector based on hollow TiN nanoparticles. Int J Therm Sci 185:108099

    Article  CAS  Google Scholar 

  27. Wang L, Zhu G, Wang M, Yu W, Zeng J, Yu X, Xie H, Li Q (2019) Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion. Sol Energy 184:240–248

    Article  CAS  Google Scholar 

  28. Palik E (1998) Handbook of optical constants of solids. Academic Press

  29. Qin F, Chen X, Yi Z, Yao W, Yang H, Tang Y, Yi Y, Li H, Yi Y (2020) Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol Energy Mater Sol Cells 211:110535

    Article  CAS  Google Scholar 

  30. Wu B, Liu Z, Liu G, Liu X, Tang P, Du G, Wen Y, Liu M (2019) An ultra-broadband, polarization and angle-insensitive metamaterial light absorber. J Phys D 53(9):095106

    Article  Google Scholar 

  31. Wu S, Ye Y, Chen L (2018) A broadband omnidirectional absorber incorporating plasmonic metasurfaces. J Mater Chem C 6(43):11593–11597

    Article  CAS  Google Scholar 

  32. Hassan M, Islam F, Baten M, Subrina S (2021) Analysis and design of InAs nanowire array based ultra broadband perfect absorber. RSC Adv 11(59):37595–37603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng Y, Chen F, Luo H (2020) Triple-band perfect light absorber based on hybrid metasurface for sensing application. Nanoscale Res Lett 15:1–10

    Article  Google Scholar 

  34. Li H, Wu D, Liu YM, Liu C, Li J, Xu ZH, Yang L, Yu ZY, Yu L, Ye H (2018) Broadband selective solar absorber based on dielectric-filled anti-reflection coated film-coupled two-dimensional metallic photonic crystals. Jpn J Appl Phys 57:110303

    Article  Google Scholar 

  35. Wu ZX, Ren ZK, Wang J, Hou SH, Liu YJ, Zhang Q, Mao J, Liu XJ, Cao F (2022) Realization of an efficient wide-angle solar selective absorber via the impedance matching. Sol Energy Mater Sol Cells 238:111582

    Article  CAS  Google Scholar 

  36. Liu X, Fu G, Liu M, Zhan X, Liu Z (2019) Titanium nanoholes meta-surface for ultra-broadband infrared absorption. Results in Physics 15:102578

    Article  Google Scholar 

  37. Liu Z, Liu G, Liu X, Wang Y, Fu G (2018) Titanium resonators based ultra-broadband perfect light absorber. Opt Mater 83:118–123

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX23_1576).

Author information

Authors and Affiliations

Authors

Contributions

Yongtao Feng: Investigation, Data curation, Writing – original draft. Yuchun Cao: Resources, Supervision, Conceptualization, Writing – review & editing. Heng Zhang: Software, Investigation, Visualization. Zao Yi: Investigation, Writing – review & editing. Haotuo Liu: Software, Investigation, Writing – review & editing. Xiaohu Wu: Resources, Conceptualization, Methodology, Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Yuchun Cao or Xiaohu Wu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Cao, Y., Zhang, H. et al. TiN-based Broadband Wide-angle Solar Absorber. Plasmonics 19, 963–972 (2024). https://doi.org/10.1007/s11468-023-02008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02008-3

Keywords

Navigation