Skip to main content
Log in

A Review on Metamaterial Sensors Based on Active Plasmonic Materials

  • REVIEW
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonics has drawn a lot of interest because of its exceptional ability to control the flow of light in metamaterials. Metamaterials and active plasmonic materials allow the mass manufacture of low-cost, high-performance, and effective nanosized optical components for imaging, sensing, and communications. Active materials have been presented as a potential base for tunable and customizable plasmonic devices to allow multifunctional devices. The traditional dynamic plasmonic systems can be significantly reconfigured by integrating non-volatile active materials with distinctive qualities like sharp optical variations, faster phase shifting, with more reliability. In this review, we are studying the different types of metamaterial plasmonic sensors which depend on sensing the change in the refractive indices of the sensed materials, and the effect of the active materials in enhancing the sensing and the absorption of light and we compare cutting-edge innovations and new pattern sensors in phase change materials (PCMs) and graphene. The various materials’ properties, their structural models, sensing parameters, and fabrication methods have been described. The study is finalized with a discussion of the difficulties faced in the process of tunable plasmonic sensors and prospects for potential future scopes in this exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright permission was taken from [47]

Fig. 3

Copyright permission was taken from [111]

Fig. 4

Copyright permission was taken from [113]

Fig. 5

Copyright permission was taken from [128]

Fig. 6

Copyright permission was taken from [132]

Fig. 7
Fig. 8

Copyright permission was taken from [145]

Fig. 9

Copyright permission was taken from [153]

Fig. 10

Copyright permission was taken from [171]

Fig. 11

Copyright permission was taken from [181]

Fig. 12

Copyright permission was taken from [185]

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Zeng W, Shu L, Li Q et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336. https://doi.org/10.1002/ADMA.201400633

    Article  CAS  PubMed  Google Scholar 

  2. Atabaki AH, Moazeni S, Pavanello F et al (2018) Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 2018 556:7701 556:349–354. https://doi.org/10.1038/s41586-018-0028-z

  3. Sun C, Wade MT, Lee Y et al (2015) Single-chip microprocessor that communicates directly using light. Nature 2015 528:7583 528:534–538. https://doi.org/10.1038/nature16454

  4. Chauhan D, Kumar A, Adhikari R et al (2021) High performance vanadium dioxide based active nano plasmonic filter and switch. Optik (Stuttg) 225. https://doi.org/10.1016/j.ijleo.2020.165672

  5. Aieta F, Genevet P, Khorasaninejad M et al (2017) Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, Vol 4, Issue 1, pp 139–152 4:139–152. https://doi.org/10.1364/OPTICA.4.000139

  6. Thomson D, Zilkie A, Bowers JE et al (2016) Roadmap on silicon photonics. J Optics 18:073003. https://doi.org/10.1088/2040-8978/18/7/073003

  7. Rickman A (2014) The commercialization of silicon photonics. Nat Photonics 2014 8:8 8:579–582. https://doi.org/10.1038/nphoton.2014.175

  8. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of and μ. Soviet Physics Uspekhi 10:509. https://doi.org/10.1070/PU1968V010N04ABEH003699

    Article  Google Scholar 

  9. Singh G, ni R, Marwaha A (2015) A review of metamaterials and its applications. Int J Eng Trends Technol 19:305–310. https://doi.org/10.14445/22315381/IJETT-V19P254

  10. Jaggard DL, Mickelson AR, Papas CH (1979) On electromagnetic waves in chiral media. Appl Phys 1979 18:2 18:211–216. https://doi.org/10.1007/BF00934418

  11. Photonic metamaterials, explained by RP Photonics Encyclopedia; nanotechnology, negative-index media, negative refraction, cloaking. https://www.rp-photonics.com/photonic_metamaterials.html. Accessed 21 Nov 2022

  12. Kivshar YS (2009) Nonlinear and tunable metamaterials. Metamaterials: Fundamentals and Applications II 7392:739217. https://doi.org/10.1117/12.827872

  13. Khan S, Eibert TF (2018) A multifunctional metamaterial-based dual-band isotropic frequency-selective surface. IEEE Trans Antennas Propag 66:4042–4051. https://doi.org/10.1109/TAP.2018.2835667

    Article  Google Scholar 

  14. Rahmat-Samii Y (2006) Metamaterials in antenna applications: classifications, designs and applications. 2006 IEEE International Workshop on Antenna Technology, IWAT 2006 - Small Antennas and Novel Metamaterials 2006:1–4. https://doi.org/10.1109/IWAT.2006.1608960

  15. Caloz C, Itoh T (2005) Fundamentals of LH MTMs. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications 27–58. https://doi.org/10.1002/0471754323.CH2

  16. Jiang N, Zhuo X, Wang J (2018) Active plasmonics: principles, structures, and applications. Chem Rev 118:3054–3099. https://doi.org/10.1021/ACS.CHEMREV.7B00252

    Article  CAS  PubMed  Google Scholar 

  17. Stevenson PR, Du M, Cherqui C et al (2020) Active plasmonics and active chiral plasmonics through orientation-dependent multipolar interactions. ACS Nano 14:11518–11532. https://doi.org/10.1021/ACSNANO.0C03971

    Article  CAS  PubMed  Google Scholar 

  18. Dickson W, Wurtz GA, Evans PR et al (2008) Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett 8:281–286. https://doi.org/10.1021/NL072613G

    Article  CAS  PubMed  Google Scholar 

  19. Tokarev I, Tokareva I, Gopishetty V et al (2010) Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles. Adv Mater 22:1412–1416. https://doi.org/10.1002/ADMA.200903456

    Article  CAS  PubMed  Google Scholar 

  20. Kaushik S, Tiwari UK, Deep A, Sinha RK (2019) Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. Sci Rep. https://doi.org/10.1038/s41598-019-43531-w

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zheng D, Hu X, Lin YS, Chen CH (2020) Tunable multi-resonance of terahertz metamaterial using split-disk resonators. AIP Adv 10:. https://doi.org/10.1063/1.5139263

  22. Lerner MB, Matsunaga F, Han GH et al (2014) Scalable production of highly sensitive nanosensors based on graphene functionalized with a designed G protein-coupled receptor. Nano Lett. https://doi.org/10.1021/nl5006349

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patel SK, Parmar J, Kosta YP et al (2020) Graphene-based highly sensitive refractive index biosensors using C-shaped metasurface. IEEE Sens J 1–1. https://doi.org/10.1109/jsen.2020.2976571

  24. Patel SK, Parmar J, Kosta YP et al (2020) Design of graphene metasurface based sensitive infrared biosensor. Sens Actuators A Phys 301:111767. https://doi.org/10.1016/j.sna.2019.111767

  25. Patel SK, Sorathiya V, Sbeah Z et al (2020) Graphene-based tunable infrared multi band absorber. Opt Commun 474. https://doi.org/10.1016/j.optcom.2020.126109

  26. Sbeah ZA, Dwivedi RP, Sorathiya V et al (2022) Graphene assisted tunable narrowband metamaterial absorber for infrared wavelength. AIP Conf Proc 2640:020007. https://doi.org/10.1063/5.0110056

  27. Chauhan D, Mola GT, Dwivedi RP (2020) An ultra-compact plasmonic Modulator/Switch using VO2 and elasto-optic effect. Optik (Stuttg) 201:. https://doi.org/10.1016/j.ijleo.2019.163531

  28. Zhu Y, Zhang Z, Song S et al (2015) Ni-doped GST materials for high speed phase change memory applications. Mater Res Bull 64:333–336. https://doi.org/10.1016/J.MATERRESBULL.2015.01.016

    Article  CAS  Google Scholar 

  29. Ng WL, Rifat AA, Wong WR et al (2018) A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics 13:1165–1170. https://doi.org/10.1007/s11468-017-0617-y

    Article  CAS  Google Scholar 

  30. Farmani H, Farmani A, Biglari Z (2020) A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E Low Dimens Syst Nanostruct 116:113730. https://doi.org/10.1016/j.physe.2019.113730

  31. Zhao X, Wang Y, Schalch J et al (2019) Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers. ACS Photonics 6:830–837. https://doi.org/10.1021/acsphotonics.8b01644

    Article  CAS  Google Scholar 

  32. Luan E, Shoman H, Ratner DM et al (2018) Silicon photonic biosensors using label-free detection. Sensors (Switzerland) 18:1–42. https://doi.org/10.3390/s18103519

    Article  CAS  Google Scholar 

  33. Huang Y, Xu J, Liu J et al (2017) Disease-related detection with electrochemical biosensors: a review. Sensors (Switzerland) 17:1–30. https://doi.org/10.3390/s17102375

    Article  CAS  Google Scholar 

  34. Sharma AK (2013) Plasmonic biosensor for detection of hemoglobin concentration in human blood: design considerations. J Appl Phys 114:. https://doi.org/10.1063/1.4816272

  35. Vafapour Z, Ghahraloud H (2018) Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial. Journal of the Optical Society of America B 35:1192. https://doi.org/10.1364/josab.35.001192

    Article  CAS  Google Scholar 

  36. Liu P, Liang Z, Lin Z et al (2019) Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-46436-w

    Article  CAS  Google Scholar 

  37. Alvarez CN, Cheung R, Thompson JS (2017) Performance analysis of hybrid metal-graphene frequency reconfigurable antennas in the microwave regime. IEEE Trans Antennas Propag 65:1558–1569. https://doi.org/10.1109/TAP.2017.2670327

    Article  Google Scholar 

  38. Lin Z, Xu Z, Liu P et al (2020) Polarization-sensitive terahertz resonator using asymmetrical F-shaped metamaterial. Opt Laser Technol 121:105826. https://doi.org/10.1016/j.optlastec.2019.105826

  39. Mo Y, Zhong J, Lin YS (2020) Tunable chevron-shaped infrared metamaterial. Mater Lett 263:127291. https://doi.org/10.1016/j.matlet.2019.127291

  40. Xu Z, Lin Z, Cheng S, Lin Y-S (2019) Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic. Opt Lett 44:3944. https://doi.org/10.1364/OL.44.003944

    Article  CAS  PubMed  Google Scholar 

  41. Ou H, Lu F, Xu Z, Lin YS (2020) Terahertz metamaterial with multiple resonances for biosensing application. Nanomaterials 10. https://doi.org/10.3390/nano10061038

  42. Sun X, Zhou L, Zhu H et al (2014) Design and analysis of a miniature intensity modulator based on a silicon-polymer-metal hybrid plasmonic waveguide. IEEE Photonics J 6. https://doi.org/10.1109/JPHOT.2014.2329395

  43. Kruger BA, Joushaghani A, S Poon JK et al (2012) Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches. Optics Express 20(21):23598–23609. https://doi.org/10.1364/OE.20.023598

  44. Zhong M (2020) Design and verification of a temperature-sensitive broadband metamaterial absorber based on VO2 film. Opt Mater (Amst) 109:110467. https://doi.org/10.1016/J.OPTMAT.2020.110467

  45. Zhang L, Pan J, Zhang Z et al (2020) Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electronic Advances 3:19002201–19002207. https://doi.org/10.29026/oea.2020.190022

  46. Sbeah ZA, Dwivedi RP, Sorathiya V et al (2022) Phase change material-based biosensor in infrared frequency spectrum. AIP Conf Proc 2640:020008. https://doi.org/10.1063/5.0110060

  47. Guo P, Sarangan AM, Agha I (2019) A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Appl Sci 9:530. https://doi.org/10.3390/APP9030530

  48. Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6(11):824–832. https://doi.org/10.1038/nmat2009

  49. Chauhan D, Sbeah Z, Adhikari R et al (2022) Theoretical analysis of VO2 filled double rectangular cavity-based coupled resonators for plasmonic active switch/modulator and band pass filter applications. Opt Mater (Amst) 125:. https://doi.org/10.1016/j.optmat.2022.112078

  50. Yamada N, Matsunaga T (2000) Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J Appl Phys 88:7020. https://doi.org/10.1063/1.1314323

    Article  CAS  Google Scholar 

  51. Friedrich I, Weidenhof V, Njoroge W et al (2000) Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J Appl Phys 87:4130. https://doi.org/10.1063/1.373041

    Article  CAS  Google Scholar 

  52. Sarangan A, Duran J, Vasilyev V et al (2018) Broadband reflective optical limiter using GST phase change material. IEEE Photonics J 10:. https://doi.org/10.1109/JPHOT.2018.2796448

  53. Coombs JH, Jongenelis APJM, Van Es-Spiekman W, Jacobs BAJ (1995) Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth. J Appl Phys 78:4906–4917. https://doi.org/10.1063/1.359779

    Article  CAS  Google Scholar 

  54. Wuttig M, Bhaskaran H, Taubner T (2017) Phase-change materials for non-volatile photonic applications. Nature Photonics 2017 11:8 11:465–476. https://doi.org/10.1038/nphoton.2017.126

  55. Shi Y, Chen LQ (2019) Current-driven insulator-to-metal transition in strongly correlated VO2. Phys Rev Appl 11:014059. https://doi.org/10.1103/PHYSREVAPPLIED.11.014059

  56. Hormoz S, Ramanathan S (2010) Limits on vanadium oxide Mott metal–insulator transition field-effect transistors. Solid State Electron 54:654–659. https://doi.org/10.1016/J.SSE.2010.01.006

    Article  CAS  Google Scholar 

  57. Baum P, Yang DS, Zewail AH (2007) 4D Visualization of transitional structures in phase transformations by electron diffraction. Science 1979:76–80. https://doi.org/10.1126/SCIENCE.1147724

    Article  Google Scholar 

  58. Morin FJ (1959) Oxides which show a metal-to-insulator transition at the Neel temperature. Phys Rev Lett 3:34. https://doi.org/10.1103/PhysRevLett.3.34

    Article  CAS  Google Scholar 

  59. Kim JT (2014) CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Optics Letters, Vol 39, Issue 13, pp 3997–4000 39:3997–4000. https://doi.org/10.1364/OL.39.003997

  60. Cao J, Ertekin E, Srinivasan V et al (2009) Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams. Nat Nanotechnol 4(11):732–737. https://doi.org/10.1038/nnano.2009.266

  61. Becker MF, Buckman AB, Walser RM et al (1998) Femtosecond laser excitation of the semiconductor-metal phase transition in VO2. Appl Phys Lett 65:1507. https://doi.org/10.1063/1.112974

    Article  Google Scholar 

  62. Cho CR, Cho S, Vadim S et al (2006) Current-induced metal–insulator transition in VOx thin film prepared by rapid-thermal-annealing. Thin Solid Films 495:375–379. https://doi.org/10.1016/J.TSF.2005.08.241

    Article  CAS  Google Scholar 

  63. Wen QY, Zhang HW, Yang QH et al (2010) Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl Phys Lett 97:021111. https://doi.org/10.1063/1.3463466

  64. Sang M, Shin J, Kim K, Yu KJ (2019) Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 9:374. https://doi.org/10.3390/NANO9030374

  65. Yan H, Li X, Chandra B et al (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334. https://doi.org/10.1038/NNANO.2012.59

    Article  CAS  PubMed  Google Scholar 

  66. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969. https://doi.org/10.1103/PHYSREVLETT.85.3966

    Article  CAS  PubMed  Google Scholar 

  67. Liu Z, Lee H, Xiong Y et al (1979) (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686. https://doi.org/10.1126/SCIENCE.1137368

    Article  Google Scholar 

  68. (2011) Graphene — the perfect atomic lattice. Uspekhi Fizicheskih Nauk 181:1283. https://doi.org/10.3367/UFNR.0181.201112D.1283

  69. Zhang Y, Li Y, Cao Y et al (2017) Graphene induced tunable and polarization-insensitive broadband metamaterial absorber. Opt Commun 382:281–287. https://doi.org/10.1016/j.optcom.2016.08.003

    Article  CAS  Google Scholar 

  70. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302. https://doi.org/10.1063/1.2891452

  71. Xu B, Gu C, Li Z, Niu Z (2013) A novel structure for tunable terahertz absorber based on graphene. Opt Express 21:23803. https://doi.org/10.1364/OE.21.023803

    Article  CAS  PubMed  Google Scholar 

  72. Fallahi A, Perruisseau-Carrier J (2012) Design of tunable biperiodic graphene metasurfaces. Phys Rev B Condens Matter Mater Phys 86:. https://doi.org/10.1103/PHYSREVB.86.195408

  73. Huidobro PA, Maier SA, Pendry JB (2017) Tunable plasmonic metasurface for perfect absorption. EPJ Appl Metamater 4. https://doi.org/10.1051/EPJAM/2017001

  74. Jiang LH, Wang F, Liang R et al (2018) Tunable terahertz filters based on graphene plasmonic all-dielectric metasurfaces. Plasmonics 13:525–530. https://doi.org/10.1007/S11468-017-0539-8

    Article  CAS  Google Scholar 

  75. Thomas L, Sorathiya V, Patel SK, Guo T (2019) Graphene-based tunable near-infrared absorber. Microw Opt Technol Lett 61:1161–1165. https://doi.org/10.1002/MOP.31712

    Article  Google Scholar 

  76. Thongrattanasiri S, Koppens FHL, García De Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:. https://doi.org/10.1103/PHYSREVLETT.108.047401

  77. Hanson GW (2008) Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56:747–757. https://doi.org/10.1109/TAP.2008.917005

    Article  Google Scholar 

  78. Patel SK, Ladumor M, Sorathiya V, Guo T (2019) Graphene based tunable grating structure. Mater Res Express 6. https://doi.org/10.1088/2053-1591/AAEA9A

  79. Kaipa CSR, Yakovlev AB, Hanson GW et al (2012) Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies. Phys Rev B Condens Matter Mater Phys 85. https://doi.org/10.1103/PHYSREVB.85.245407

  80. Dave V, Sorathiya V, Guo T, Patel SK (2018) Graphene based tunable broadband far-infrared absorber. Superlattices Microstruct 124:113–120. https://doi.org/10.1016/j.spmi.2018.10.013

    Article  CAS  Google Scholar 

  81. Asif SM, Iftikhar A, Braaten BD, Khan MS (2016) Design of an ultra-wideband antenna using flexible graphene-based conductor sheets. 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016 - Proceedings 1863–1864. https://doi.org/10.1109/APS.2016.7696638

  82. Wang Z, Mu H, Yuan J et al (2017) Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers. IEEE J Sel Top Quantum Electron 23:195–199. https://doi.org/10.1109/JSTQE.2016.2514784

    Article  Google Scholar 

  83. Yesilkoy F (2019) Optical interrogation techniques for nanophotonic biochemical sensors. Sensors 19:4287. https://doi.org/10.3390/S19194287

  84. Lee Y, Kim SJ, Park H, Lee B (2017) Metamaterials and metasurfaces for sensor applications. Sensors 17:1726. https://doi.org/10.3390/S17081726

  85. Xu W, Xie L, Ying Y (2017) Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale 9:13864–13878. https://doi.org/10.1039/C7NR03824K

    Article  CAS  PubMed  Google Scholar 

  86. Patel SK, Parmar J, Sorathiya V, Nguyen TK (2021) Tunable infrared metamaterial - based biosensor for detection of hemoglobin and urine using phase change material. Sci Rep 1–11. https://doi.org/10.1038/s41598-021-86700-6

  87. Abdollahramezani S, Hemmatyar O, Taghinejad H et al (2020) Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9:1189–1241. https://doi.org/10.1515/NANOPH-2020-0039/XML

    Article  CAS  Google Scholar 

  88. Nejat M, Nozhat N (2020) Sensing and switching capabilities of a tunable GST-based perfect absorber in near-infrared region. J Phys D Appl Phys 53:245105. https://doi.org/10.1088/1361-6463/AB7D6A

  89. Yan X, Yang M, Zhang Z et al (2019) The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens Bioelectron 126:485–492. https://doi.org/10.1016/j.bios.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  90. Patel SK, Parmar J, Trivedi H et al (2020) Highly sensitive graphene-based refractive index biosensor using gold metasurface array. IEEE Photonics Technol Lett 32:681–684. https://doi.org/10.1109/LPT.2020.2992085

    Article  CAS  Google Scholar 

  91. Meinders ER, Mijiritskii A V., Van Pieterson L, Matthias W (2006) Optical data storage: phase-change media and recording. Optical Data Storage: Phase-Change Media and Recording 1–173. https://doi.org/10.1007/978-1-4020-4217-1

  92. Yamada N, Ohno E, Akahira N et al (1987) High speed overwritable phase change optical disk material. Jpn J Appl Phys 26:61–66. https://doi.org/10.7567/JJAPS.26S4.61

    Article  Google Scholar 

  93. Aseltine JA (1973) The application of amorphous materials to computer memories. IEEE Trans Electron Devices ED-20:195–205. https://doi.org/10.1109/T-ED.1973.17628

  94. Owen AE, Robertson JM (1973) Electronic conduction and switching in chalcogenide glasses. IEEE Trans Electron Devices ED-20:105–122. https://doi.org/10.1109/T-ED.1973.17617

  95. Wuttig M (2005) Towards a universal memory? Nature Materials 2005 4:4 4:265–266. https://doi.org/10.1038/nmat1359

  96. Sbeah ZA, Adhikari R, Sorathiya V et al (2022) GST-based plasmonic biosensor for hemoglobin and urine detection. Plasmonics 2022:1–14. https://doi.org/10.1007/S11468-022-01728-2

    Article  Google Scholar 

  97. Lazarenko PI, Sherchenkov AA, Kozyukhin SA et al (2016) Electrical properties of the Ge2Sb2Te5 thin films for phase change memory application. AIP Conf Proc 1727:020013. https://doi.org/10.1063/1.4945968

  98. Kiouseloglou A, Navarro G, Sousa V et al (2014) A novel programming technique to boost low-resistance state performance in Ge-rich GST phase change memory. IEEE Trans Electron Devices 61:1246–1254. https://doi.org/10.1109/TED.2014.2310497

    Article  CAS  Google Scholar 

  99. Leskelä M, Pore V, Hatanpää T et al (2009) Atomic layer deposition of materials for phase-change memories. ECS Trans 25:399–407. https://doi.org/10.1149/1.3205074

    Article  Google Scholar 

  100. Fallica R, Battaglia JL, Cocco S et al (2009) Thermal and electrical characterization of materials for phase-change memory cells. J Chem Eng Data 54:1698–1701. https://doi.org/10.1021/JE800770S

    Article  CAS  Google Scholar 

  101. Yamada N (1996) Erasable phase-change optical materials. MRS Bull 21:48–50. https://doi.org/10.1557/S0883769400036368

    Article  CAS  Google Scholar 

  102. Cao T, Simpson RE, Zhang L, Cryan MJ (2013) Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. JOSA B 30(6):1580–1585. https://doi.org/10.1364/JOSAB.30.001580

  103. Shportko K, Kremers S, Woda M et al (2008) Resonant bonding in crystalline phase-change materials. Nat Mater 7:653–658. https://doi.org/10.1038/nmat2226

  104. Aliqab K, Sorathiya V, Alsharari M et al (2023) Numerical analysis of hafnium oxide and phase change material-based multi-layered infrared and visible frequency sensor for biomolecules sensing application. Sci Rep 3:1–19. https://doi.org/10.1038/s41598-023-34817-1

  105. Basu PK, Dhasmana H (2022) Band theory. Solid State Eng Phys 81–108. https://doi.org/10.1007/978-3-031-10940-9_4

  106. Cueff S, John J, Zhang Z et al (2020) VO2nanophotonics. APL Photonics 5:110901. https://doi.org/10.1063/5.0028093

  107. Weber C, O’Regan DD, Hine NDM et al (2012) Vanadium dioxide: a Peierls-Mott insulator stable against disorder. Phys Rev Lett 108:256402. https://doi.org/10.1103/PHYSREVLETT.108.256402

  108. Xu S, Shen X, Hallman KA et al (2017) Unified band-theoretic description of structural, electronic, and magnetic properties of vanadium dioxide phases. Phys Rev B 95:125105. https://doi.org/10.1103/PHYSREVB.95.125105

  109. Biermann S, Poteryaev A, Lichtenstein AI, Georges A (2005) Dynamical singlets and correlation-assisted peierls transition in vo 2. Phys Rev Lett 94:1–4. https://doi.org/10.1103/PHYSREVLETT.94.026404

    Article  Google Scholar 

  110. Tomczak JM, Aryasetiawan F, Biermann S (2008) Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO2. Phys Rev B Condens Matter Mater Phys 78:115103. https://doi.org/10.1103/PHYSREVB.78.115103

  111. Wu Y, Fan L, Huang W et al (2014) Depressed transition temperature of WxV1-xO2: mechanistic insights from the X-ray absorption fine structure (XAFS) spectroscopy. Phys Chem Chem Phys 16:17705–17714. https://doi.org/10.1039/C4CP01661K

    Article  CAS  PubMed  Google Scholar 

  112. Chen C, Zhao Y, Pan X et al (2011) Influence of defects on structural and electrical properties of VO2 thin films. J Appl Phys 110:023707. https://doi.org/10.1063/1.3609084

  113. Zhang J, Zhao Z, Li J et al (2017) Evolution of structural and electrical properties of oxygen-deficient VO2 under low temperature heating process. ACS Appl Mater Interfaces 9:27135–27141. https://doi.org/10.1021/ACSAMI.7B05792

    Article  PubMed  Google Scholar 

  114. Currie M, Mastro MA, Wheeler VD et al (2017) Characterizing the tunable refractive index of vanadium dioxide. Optical Mater Express 7(5):1697–1707. https://doi.org/10.1364/OME.7.001697

  115. Zhang D-Q, Tao Y, Pan G-M et al (2022) Switchable transmissive and reflective metadevices based on the phase transition of vanadium dioxide. Opt Lett 47:6073. https://doi.org/10.1364/OL.476857

    Article  CAS  PubMed  Google Scholar 

  116. Ke Y, Wang S, Liu G et al (2018) Vanadium dioxide: the multistimuli responsive material and its applications. Small 14:1802025. https://doi.org/10.1002/SMLL.201802025

    Article  Google Scholar 

  117. Boyd RW, Gehr RJ, Fischer GL, Sipe JE (1996) Nonlinear optical properties of nanocomposite materials. Pure and Applied Optics: Journal of the European Optical Society Part A 5:505. https://doi.org/10.1088/0963-9659/5/5/005

    Article  CAS  Google Scholar 

  118. Sharan P, Yadav A, Kumar A (2022) Sensitivity enhancement of a plasmonic biosensor for urine glucose detection by employing black phosphorous. JOSA B 39(1):200–206. https://doi.org/10.1364/JOSAB.444838

  119. Zafar R, Nawaz S, Singh G et al (2018) Plasmonics-based refractive index sensor for detection of hemoglobin concentration. IEEE Sens J 18:4372–4377. https://doi.org/10.1109/JSEN.2018.2826040

    Article  CAS  Google Scholar 

  120. Weng X, Neethirajan S (2016) A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron 85:649–656. https://doi.org/10.1016/J.BIOS.2016.05.072

    Article  CAS  PubMed  Google Scholar 

  121. Xing F, Meng GX, Zhang Q et al (2014) Ultrasensitive flow sensing of a single cell using graphene-based optical sensors. Nano Lett 14:3563–3569. https://doi.org/10.1021/NL5012036

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Q, Zhang D, Lu Y et al (2015) Graphene oxide-based optical biosensor functionalized with peptides for explosive detection. Biosens Bioelectron 68:494–499. https://doi.org/10.1016/J.BIOS.2015.01.040

    Article  CAS  PubMed  Google Scholar 

  123. Balapanuru J, Yang J-X, Xiao S et al (2010) A graphene oxide–organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem 122:6699–6703. https://doi.org/10.1002/ANGE.201001004

    Article  Google Scholar 

  124. Morales-Narváez E, Merkoçi A (2019) Graphene oxide as an optical biosensing platform: a progress report. Adv Mater 31:1805043. https://doi.org/10.1002/ADMA.201805043

    Article  Google Scholar 

  125. Li EP, Wu L, Koh WS, Chu HS (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express 18(14):14395–14400. https://doi.org/10.1364/OE.18.014395

  126. Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun 357:106–112. https://doi.org/10.1016/J.OPTCOM.2015.08.076

    Article  CAS  Google Scholar 

  127. Shokati E, Asgari S, Granpayeh N (2019) Dual-band polarization-sensitive graphene chiral metasurface and its application as a refractive index sensor. IEEE Sens J 19:9991–9996. https://doi.org/10.1109/JSEN.2019.2925963

    Article  CAS  Google Scholar 

  128. Clemons CB, Roberts MW, Wilber JP et al (2010) Continuum plate theory and atomistic modeling to find the flexural rigidity of a graphene sheet interacting with a substrate. J Nanotechnol. https://doi.org/10.1155/2010/868492

    Article  Google Scholar 

  129. Chen CM, Huang JQ, Zhang Q et al (2012) Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon N Y 50:659–667. https://doi.org/10.1016/J.CARBON.2011.09.022

    Article  CAS  Google Scholar 

  130. Meric I, Han MY, Young AF et al (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3(11):654–659. https://doi.org/10.1038/nnano.2008.268

  131. Rao CNR, Gopalakrishnan K, Govindaraj A (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9:324–343. https://doi.org/10.1016/J.NANTOD.2014.04.010

    Article  CAS  Google Scholar 

  132. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/ADMA.201001068

    Article  CAS  PubMed  Google Scholar 

  133. Huidobro PA, Maier SA, Pendry JB (2017) Tunable plasmonic metasurface for perfect absorption. EPJ Applied Metamaterials 4:6. https://doi.org/10.1051/EPJAM/2017001

    Article  Google Scholar 

  134. Kumar V (2021) Linear and nonlinear optical properties of graphene: a review. J Electr Mater 50(7):3773–3799. https://doi.org/10.1007/S11664-021-08904-W

  135. Vahed H, Nadri C (2019) Sensitivity enhancement of SPR optical biosensor based on Graphene–MoS2 structure with nanocomposite layer. Opt Mater (Amst) 88:161–166. https://doi.org/10.1016/j.optmat.2018.11.034

    Article  CAS  Google Scholar 

  136. Guo Z, Yang X, Shen F et al (2018) Active-tuning and polarization-independent absorber and sensor in the infrared region based on the phase change material of Ge2Sb2Te5 (GST). Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-30550-2

    Article  CAS  Google Scholar 

  137. Wei M, Song Z, Deng Y et al (2019) Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces. Mater Lett 236:350–353. https://doi.org/10.1016/j.matlet.2018.10.136

    Article  CAS  Google Scholar 

  138. Song WD, Shi LP, Miao XS, Chong CT (2008) Synthesis and characteristics of a phase-change magnetic material. Adv Mater 20:2394–2397. https://doi.org/10.1002/adma.200702282

    Article  CAS  Google Scholar 

  139. Gerislioglu B, Bakan G, Ahuja R et al (2020) The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Mater Today Phys 12:100178. https://doi.org/10.1016/j.mtphys.2020.100178

  140. Zhang L, Wang Y, Zhou L, Chen F (2019) Tunable perfect absorber based on gold grating including phase-changing material in visible range. Appl Phys A Mater Sci Process 125:1–7. https://doi.org/10.1007/s00339-019-2669-7

    Article  CAS  Google Scholar 

  141. Macaluso R, Mosca M, Costanza V et al (2014) Resistive switching behaviour in ZnO and VO2 memristors grown by pulsed laser deposition. Electron Lett 50:262–263. https://doi.org/10.1049/EL.2013.3175

    Article  CAS  Google Scholar 

  142. Adhikari R, Sbeah Z, Chauhan D et al (2022) A voyage from plasmonic to hybrid waveguide refractive index sensors based on wavelength interrogation technique: a review. Braz J Phys 52(3):1–28. https://doi.org/10.1007/S13538-022-01064-0

  143. Adhikari R, Sbeah Z, Chauhan D et al (2022) Enhanced coupling efficiency in metal – dielectric – metal waveguide-ring structure for plasmonic temperature sensor and sucrose concentration detector. Optik (Stuttg) 264:169425. https://doi.org/10.1016/J.IJLEO.2022.169425

  144. Adhikari R, Sbeah Z, Gupta R et al (2022) Compact and sensitive H-shaped metal–dielectric–metal waveguide plasmonic sensor. Plasmonics 17:1593–1606. https://doi.org/10.1007/S11468-022-01646-3

    Article  CAS  Google Scholar 

  145. Baqir MA, Choudhury PK, Ibrahim ABMA (2019) Metamaterial-based temperature sensor comprised of vo nano-ribbons. Proceedings of the 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 195–198. https://doi.org/10.1109/ECTI-CON47248.2019.8955178

  146. Yadav A, Kumar A, Sharan P (2022) MonoLayer graphene-based plasmonic biosensor for urine glucose detection. Lecture Notes in Networks and Systems 376:459–468. https://doi.org/10.1007/978-981-16-8826-3_39

    Article  Google Scholar 

  147. Hernández R, Vallés C, Benito AM et al (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557. https://doi.org/10.1016/j.bios.2013.11.053

    Article  CAS  PubMed  Google Scholar 

  148. Wei W, Qu X (2012) Extraordinary physical properties of functionalized graphene. Small 8:2138–2151. https://doi.org/10.1002/SMLL.201200104

    Article  CAS  PubMed  Google Scholar 

  149. Cen C, Chen Z, Xu D et al (2020) High quality factor, high sensitivity metamaterial graphene—perfect absorber based on critical coupling theory and impedance matching. Nanomaterials 10. https://doi.org/10.3390/nano10010095

  150. Yang X, Lu Y, Liu B, Yao J (2017) Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12:489–496. https://doi.org/10.1007/s11468-016-0289-z

    Article  CAS  Google Scholar 

  151. Farmani A, Mir A (2019) Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol Lett 31:643–646. https://doi.org/10.1109/LPT.2019.2904618

    Article  CAS  Google Scholar 

  152. Fu H, Zhang S, Chen H, Weng J (2015) Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens J 15:5478–5482. https://doi.org/10.1109/JSEN.2015.2442276

    Article  CAS  Google Scholar 

  153. Almawgani AHM, Surve J, Parmar T et al (2023) A graphene-metasurface-inspired optical sensor for the heavy metals detection for efficient and rapid water treatment. Photonics 10:56. https://doi.org/10.3390/PHOTONICS10010056

    Article  CAS  Google Scholar 

  154. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493. https://doi.org/10.1021/CR068107D

    Article  CAS  PubMed  Google Scholar 

  155. Pourmand M, Choudhury PK, Mohamed MA (2021) Tunable absorber embedded with GST mediums and trilayer graphene strip microheaters. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-83304-y

  156. Patel SK, Parmar J (2021) Highly sensitive and tunable refractive index biosensor based on phase change material. Physica B Condens Matter 622:413357. https://doi.org/10.1016/J.PHYSB.2021.413357

  157. Linyang G, Xiaohui M, Zhaoqing C et al (2021) Tunable a temperature-dependent GST-based metamaterial absorber for switching and sensing applications. J Market Res 14:772–779. https://doi.org/10.1016/J.JMRT.2021.06.080

    Article  Google Scholar 

  158. Rakhshani MR (2020) Tunable and sensitive refractive index sensors by plasmonic absorbers with circular arrays of nanorods and nanotubes for detecting cancerous cells. Plasmonics 15(6):2071–2080. https://doi.org/10.1007/S11468-020-01237-0

  159. Youssef J, Zhu S, Crunteanu A et al (2022) Highly sensitive plasmonic biosensors with precise phase singularity coupling on the metastructures. Biosensors (Basel) 12:866. https://doi.org/10.3390/BIOS12100866

    Article  CAS  PubMed  Google Scholar 

  160. Patel SK, Parmar J, Zakaria RB et al (2021) Sensitivity analysis of metasurface array-based refractive index biosensors. IEEE Sens J 21:1470–1477. https://doi.org/10.1109/JSEN.2020.3017938

    Article  CAS  Google Scholar 

  161. Zhang D, Li Z, Fan K et al (2022) Dynamically tunable terahertz metamaterial sensor based on metal–graphene hybrid structural unit. AIP Adv 12:025206. https://doi.org/10.1063/5.0079964

  162. Farrokhfar M, Jarchi S, Keshtkar A (2022) Multilayer metamaterial graphene sensor with high sensitivity and independent on the incident angle. Optik (Stuttg) 265:169536. https://doi.org/10.1016/J.IJLEO.2022.169536

  163. Wu T, Liu Y, Yu Z et al (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Optics Express, Vol 22, Issue 7, pp 7669–7677 22:7669–7677. https://doi.org/10.1364/OE.22.007669

  164. Chen Y, Xu Y, Cao J (2019) Fano resonance sensing characteristics of MIM waveguide coupled Square Convex Ring Resonator with metallic baffle. Results Phys 14:102420. https://doi.org/10.1016/J.RINP.2019.102420

  165. Sahu S, Ali J, Yupapin PP, Singh G (2018) Porous silicon based Bragg-Grating resonator for refractive index biosensor. Photonic Sensors 8:248–254. https://doi.org/10.1007/S13320-018-0459-Z

    Article  CAS  Google Scholar 

  166. Li X, Zheng G, Zhang G et al (2022) Highly sensitive terahertz dielectric sensor for liquid crystal. Symmetry 14:1820. https://doi.org/10.3390/SYM14091820

  167. Fouad S, Sabri N, Jamal ZAZ, Poopalan P (2016) Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate. J Nano Electr Phys 8. https://doi.org/10.21272/JNEP.8(4(2)).04085

  168. Irfan M, Khan Y, Rehman AU et al (2022) Plasmonic refractive index and temperature sensor based on graphene and LiNbO3. Sensors 22:7790. https://doi.org/10.3390/S22207790

  169. Liu C, Wang J, Wang F et al (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt Commun 464:125496. https://doi.org/10.1016/J.OPTCOM.2020.125496

  170. Guo W, Hu F, Liu W et al (2022) Molecular imprinted polymer modified terahertz metamaterial sensor for specific detection of gaseous hexanal. Mater Lett 322:132468. https://doi.org/10.1016/J.MATLET.2022.132468

  171. Qu Y, Li Q, Du K et al (2017) Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photon Rev 11. https://doi.org/10.1002/LPOR.201700091

  172. Suda K, Uno T, Miyakawa T et al (2013) Ge2Sb2Te5 film fabrication by tellurization of chemical vapor deposited GeSb. Jpn J Appl Phys 52:128006. https://doi.org/10.7567/JJAP.52.128006

  173. Ohta T, Nagata K, Satoh I et al (2011) Fabrication of phase-change Ge2Sb2Te5 nano-rings. Optics Express 19(13):12652–12657. https://doi.org/10.1364/OE.19.012652

  174. Guo P, Burrow JA, Sevison GA et al (2018) Improving the performance of Ge2Sb2Te5 materials via nickel doping: towards RF-compatible phase-change devices. Appl Phys Lett 113:171903. https://doi.org/10.1063/1.5053713

  175. Sevison GA, Farzinazar S, Burrow JA et al (2020) Phase change dynamics and two-dimensional 4-bit memory in Ge2Sb2Te5 via telecom-band encoding. ACS Photonics 7:480–487. https://doi.org/10.1021/ACSPHOTONICS.9B01456

    Article  CAS  Google Scholar 

  176. Guo P, Burrow JA, Sevison GA et al (2020) Tungsten-doped Ge2Sb2Te5 phase change material for high-speed optical switching devices. Appl Phys Lett 116:131901. https://doi.org/10.1063/1.5142552

  177. Hirakawa K, Sarangan A, Heenkenda R (2021) Tunable optical filter using phase change materials for smart IR night vision applications. Optics Express 29(21):33795–33803. https://doi.org/10.1364/OE.440299

  178. Zhao L, Miao L, Liu C et al (2014) Solution-processed VO2-SiO2 composite films with simultaneously enhanced luminous transmittance, solar modulation ability and anti-oxidation property. Sci Rep 4(1):1–11. https://doi.org/10.1038/srep07000

  179. Tanyi G, Sun M, Unnithan R (2020) Design of on-chip plasmonic modulator with vanadium-dioxide in hybrid orthogonal junctions on Silicon-on-Insulator. https://doi.org/10.48550/arxiv.2012.01695

  180. Sun M, Shieh W, Unnithan RR (2017) Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator. IEEE Photonics J 9. https://doi.org/10.1109/JPHOT.2017.2690448

  181. Liu ZM, Li Y, Zhang J et al (2017) Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films. J Phys D Appl Phys 50:385104. https://doi.org/10.1088/1361-6463/AA8338

  182. Shi R, Shen N, Wang J et al (2019) Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide. Appl Phys Rev 6:011312. https://doi.org/10.1063/1.5087864

  183. Zhang Y, Qiao S, Sun L et al (2014) Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method. Optics Express 22(9):11070–11078. https://doi.org/10.1364/OE.22.011070

  184. Razaq A, Bibi F, Zheng X et al (2022) Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials 15:1012. https://doi.org/10.3390/MA15031012

  185. Won S, Jung HJ, Kim D et al (2020) Graphene-based crack lithography for high-throughput fabrication of terahertz metamaterials. Carbon N Y 158:505–512. https://doi.org/10.1016/J.CARBON.2019.11.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Shoolini University, Solan, Himachal, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Zen A Sbeah: Conceptualization, Methodology, Software, Writing – original draft. Rammani Adhikari: Data curation, Resources, and Software. Vishal Sorathiya: Software- Reviewing. Diksha Chauhan: Visualization, Software. Sheng Hsiung Chang: Writing- Reviewing. Ram Prakash Dwivedi: Conceptualization, supervision Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ram Prakash Dwivedi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbeah, Z.A., Adhikari, R., Sorathiya, V. et al. A Review on Metamaterial Sensors Based on Active Plasmonic Materials. Plasmonics 18, 1619–1638 (2023). https://doi.org/10.1007/s11468-023-01904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01904-y

Keywords

Navigation