Skip to main content
Log in

High-Sensitivity Gold-Coated Refractive Index Biosensor Based on Surface Plasmon Resonance

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

High-sensitivity gold-coated photonic crystal fiber (PCF) refractive index (RI) biosensor based on surface plasmon resonance (SPR) is proposed. To evaluate the sensing characteristics of the proposed sensor, the finite element method (FEM) is used. As a base material, silica is used and as a plasmonic material, 40-nm thickness gold layer is chosen. Resonance of electrons requires active plasmonic material. Gold is chosen because it has the highest plasmonic activity of all active plasmonic materials and offers the best resonance. The uppermost wavelength sensitivity response of 45,409.14 nm/RIU is obtained at RI 1.35. The maximum amplitude resolution, amplitude sensitivity response, birefringence, transmittance, coupling length, and dispersion of 2.52 × 10−05, 7679.06 RIU−1, 3.1 × 10−4, − 24.5 dB, 1,87,500 µm, and − 7000 ps/(nm-km) are obtained respectively. The proposed sensor is a strong contender for detecting microfluidic analytes in the biosensor field for its exceptional sensitivity response, compact structural design, and tunable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Xu Y, Wu L, Ang LK (2018) \$\text{MoS}_2 \$-based highly sensitive near-infrared surface plasmon resonance refractive index sensor. IEEE J Sel Top Quantum Electron 25(2):1–7

    Article  Google Scholar 

  2. Yasli A (2021) Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16(5):1605–1612

    Article  CAS  Google Scholar 

  3. Islam MR, Iftekher ANM, Hasan KR, Nayen M, Islam SB, Islam R, Khan RL, Moazzam E, Tasnim Z (2021) Surface plasmon resonance based highly sensitive gold coated PCF biosensor. Appl Phys A 127(2):1–12

    Article  Google Scholar 

  4. Wu J, Li S, Wang X, Shi M, Feng X, Liu Y (2018) Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance. Appl Opt 57(15):4002–4007

    Article  CAS  PubMed  Google Scholar 

  5. Singh S, Upadhyay A, Sharma D, Taya SA (2022) A comprehensive study of large negative dispersion and highly nonlinear perforated core PCF: theoretical insight. Phys Scr 97(6):065504

    Article  Google Scholar 

  6. Liu W, Shi Y, Yi Z, Liu C, Wang F, Li X, Lv J, Yang L, Chu PK (2021) Surface plasmon resonance chemical sensor composed of a microstructured optical fiber for the detection of an ultra-wide refractive index range and gas-liquid pollutants. Opt Express 29(25):40734–40747

    Article  CAS  Google Scholar 

  7. Singh S, Prajapati YK (2022) Antimonene-gold based twin-core SPR sensor with a side-polished semi-arc groove dual sensing channel: an investigation with 2D material. Opt Quant Electron 54:1–14

    Article  Google Scholar 

  8. Chu S, Nakkeeran K, Abobaker AM, Aphale SS, Sivabalan S, Babu PR, Senthilnathan K (2020) A surface plasmon resonance bio-sensor based on dual core D-shaped photonic crystal fibre embedded with silver nanowires for multisensing. IEEE Sens J 21(1):76–84

    Article  Google Scholar 

  9. Upadhyay A, Singh S, Sharma D, Taya SA (2021) A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: an analysis with core porosity. Appl Nanosci 11:1021–1030

    Article  CAS  Google Scholar 

  10. Haque E, Hossain MA, Ahmed F, Namihira Y (2018) Surface plasmon resonance sensor based on modified $ D $-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens J 18(20):8287–8293

    Article  CAS  Google Scholar 

  11. Omar NAS, Fen YW, Saleviter S, Daniyal WMEMM, Anas NAA, Ramdzan NSM, Roshidi MDA (2019) Development of a graphene-based surface plasmon resonance optical sensor chip for potential biomedical application. Materials 12(12):1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh S, Chaudhary B, Upadhyay A, Sharma D, Ayyanar N, Taya SA (2023) A review on various sensing prospects of SPR based photonic crystal fibers. Photonics Nanostructures-Fundam Appl 101119

  13. Fouthika V, Samundiswary P, Sivasindhu M (2019, January) Performance analysis of circular lattice PCF biosensor using surface plasmon resonance. In 2019 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1–4). IEEE

  14. Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10(5):1123–1131

    Article  CAS  Google Scholar 

  15. Gandhi MA, Babu PR, Senthilnathan K, Li Q (2018) High sensitivity photonic crystal fiber-based refractive index microbiosensor. Opt Fiber Technol 46:88–94

    Article  CAS  Google Scholar 

  16. Chen N, Chang M, Lu X, Zhou J, Zhang X (2019) Photonic crystal fiber plasmonic sensor based on dual optofluidic channel. Sensors 19(23):5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen N, Chang M, Lu X, Zhou J, Zhang X (2020) Numerical analysis of midinfrared D-shaped photonic-crystal-fiber sensor based on surface-plasmon-resonance effect for environmental monitoring. Appl Sci 10(11):3897

    Article  CAS  Google Scholar 

  18. Meng X, Li J, Guo Y, Li S, Wang Y, Bi W, Lu H (2020) An optical-fiber sensor with double loss peaks based on surface plasmon resonance. Optik 216:164938

    Article  CAS  Google Scholar 

  19. Hasan MR, Akter S, Rifat AA, Rana S, Ali S (2017, March) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. In Photonics (Vol. 4, No. 1, p. 18). MDPI

  20. Asaduzzaman Jabin M, Ahmed K, Juwel Rana M, Kumar Paul B, Dhasarathan V, Shahin Uddin M (2019) Multicore bi-layer gold-coated SPR-based sensor for simultaneous measurements of CFC and HCFC. Int J Mod Phys B 33(27):1950316

    Article  CAS  Google Scholar 

  21. Li D, Zhang W, Liu H, Hu J, Zhou G (2017) High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photonics J 9(2):1–8

    Article  Google Scholar 

  22. Saha R, Hossain M, Rahaman M, Mondal HS (2019) Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber. Frontiers of Optoelectronics 12(2):165–173

    Article  Google Scholar 

  23. Reyes-Vera E, Usuga-Restrepo J, Jimenez-Durango C, Montoya-Cardona J, Gomez-Cardona N (2018) Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter. IEEE Photonics J 10(4):1–13

    Article  Google Scholar 

  24. Panda A, Pukhrambam PD (2021) Design and analysis of porous core photonic crystal fiber based ethylene glycol sensor operated at infrared wavelengths. J Comput Electron 20(2):943–957

    Article  CAS  Google Scholar 

  25. Ayyanar N, Raja RVJ, Vigneswaran D, Lakshmi B, Sumathi M, Porsezian K (2017) Highly efficient compact temperature sensor using liquid infiltrated asymmetric dual elliptical core photonic crystal fiber. Opt Mater 64:574–582

    Article  CAS  Google Scholar 

  26. Ayyanar N, Raja GT, Sharma M, Kumar DS (2018) Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens J 18(17):7093–7099

    Article  CAS  Google Scholar 

  27. Fan Z (2019) A tunable high-sensitivity refractive index of analyte biosensor based on metal-nanoscale covered photonic crystal fiber with surface plasmon resonance. IEEE Photonics J 11(3):1–14

    Article  CAS  Google Scholar 

  28. Yasli A, Ademgil H, Haxha S, Aggoun A (2019) Multi-channel photonic crystal fiber based surface plasmon resonance sensor for multi-analyte sensing. IEEE Photonics J 12(1):1–15

    Article  Google Scholar 

  29. Paul AK, Sarkar AK, Rahman ABS, Khaleque A (2018) Twin core photonic crystal fiber plasmonic refractive index sensor. IEEE Sens J 18(14):5761–5769

    Article  CAS  Google Scholar 

  30. Monfared YE, Ponomarenko SA (2019) Extremely nonlinear carbon-disulfide-filled photonic crystal fiber with controllable dispersion. Opt Mater 88:406–411

    Article  CAS  Google Scholar 

  31. An G, Hao X, Li S, Yan X, Zhang X (2017) D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl Opt 56(24):6988–6992

    Article  CAS  PubMed  Google Scholar 

  32. Rifat AA, Haider F, Ahmed R, Mahdiraji GA, Adikan FM, Miroshnichenko AE (2018) Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt Lett 43(4):891–894

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Xia L, Li C (2018) Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photonics J 10(1):1–9

    Google Scholar 

  34. Zhu M, Yang L, Lv J, Liu C, Li Q, Peng C, Li X, Chu PK (2022) Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with gold film. Plasmonics 17(2):543–550

    Article  CAS  Google Scholar 

  35. Mitu SA, Aktar M, Ibrahim SM, Ahmed K (2022) Surface plasmon resonance–based refractive index biosensor: an external sensing approach. Plasmonics 1–12

Download references

Funding

The work is funded and supported by Ministry of ICT, Peoples Republic of Bangladesh. The authors are highly grateful for their support and funding in this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H. A, B. K. P.; methodology, H. A., B. K. P.; software, M. S. U., B.K.P.; validation, M. S. U, B. K. P.; formal analysis, H. A.; investigation, H. A; resources, M. S. U, B. K. P.; data curation, H. A., B. K. P.; writing—original draft preparation, H. A; writing—review and editing, M. S. U, B. K. P.; visualization, M. S. U., B. K. P.; supervision, M. S. U., B. K. P.

Corresponding author

Correspondence to Bikash Kumar Paul.

Ethics declarations

Ethical Approval

This research is not directly related with human or animal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Uddin, M.S. & Paul, B.K. High-Sensitivity Gold-Coated Refractive Index Biosensor Based on Surface Plasmon Resonance. Plasmonics 18, 2213–2223 (2023). https://doi.org/10.1007/s11468-023-01890-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01890-1

Keywords

Navigation