Skip to main content
Log in

Design and Analysis of Gas Sensor Using Tailorable Fano Resonance by Coupling Between Tamm and Defected Mode Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Realizing the importance of gas sensors in diversified fields, we address a Fano resonance-based sensor for the detection of greenhouse gases like carbon dioxide, carbon disulfide, and sulfur dioxide. The proposed structure is comprised of metal integrated one-dimensional photonic crystal, where the photonic crystal is designed with an alternate arrangement of SiO2 and Si with a central defect/sample layer. The research’s major focus is based on the study of variation of Fano resonance characteristics for different greenhouse gases. Numerous geometrical parameters like the thickness of the sample layer, incident angle, the thickness of the Pt layer, and the number of periods of the photonic crystal are properly optimized to envisage high sensing performances. With the optimized structure, we obtained a maximum sensitivity of 19,740 nm/RIU which is far superior compared to the recently published similar works. Moreover, the simple analysis and cost-effective manufacturing methods make the designed structure a strong contender for gas sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Requests for materials or code should be addressed to Z. A. Z.

References

  1. Harrison R, Webb J (2001) A review of the effect of N fertilizer type on gaseous emissions. Adv Agron 73:65–108. https://doi.org/10.1016/S0065-2113(01)73005-2

    Article  CAS  Google Scholar 

  2. Abdul-Wahab SA, Al-Alawi SM (2002) Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ Model Softw 17:219–228. https://doi.org/10.1016/S1364-8152(01)00077-9

    Article  Google Scholar 

  3. Lemieux PM, Lutes CC, Santoianni DA (2004) Emissions of organic air toxics from open burning: a comprehensive review. Prog Energy Combust Sci 30:1–32. https://doi.org/10.1016/j.pecs.2003.08.001

    Article  CAS  Google Scholar 

  4. Butnar I, Llop M (2007) Composition of greenhouse gas emissions in Spain: an input–output analysis. Ecol Econ 61:388–395. https://doi.org/10.1016/j.ecolecon.2006.03.005

    Article  Google Scholar 

  5. Liu H, Zhang L, Li KHH, Tan OK (2018) Microhotplates for metal oxide semiconductor gas sensor applications—Towards the CMOS-MEMS monolithic approach. Micromachines 9:557. https://doi.org/10.3390/mi9110557

    Article  PubMed Central  Google Scholar 

  6. Xu H, Wu P, Zhu C, Elbaz A, Gu ZZ (2013) Photonic crystal for gas sensing. Journal of Materials Chemistry C 1:6087–6098. https://doi.org/10.1039/C3TC30722K

    Article  CAS  Google Scholar 

  7. LI W, HAN Y, CHEN Z, WANG L, JIANG H, HAMAMOTO K (2020) Amplifier-assisted waveguide sensing toward breath-gas analysis. Eng Sci Rep 42:19–26. https://doi.org/10.15017/4479144

  8. Zaky ZA, Aly AH (2021) Gyroidal graphene/porous silicon array for exciting optical Tamm state as optical sensor. Sci Rep 11:19389. https://doi.org/10.1038/s41598-021-98305-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zaky ZA, Alamri S, Zhaketov VD, Aly AH (2022) Refractive index sensor with magnified resonant signal. Sci Rep 12:13777. https://doi.org/10.1038/s41598-022-17676-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaky ZA, Aly AH (2021) Highly sensitive salinity and temperature sensor using Tamm resonance. Plasmonics 16:2315–2325. https://doi.org/10.1007/s11468-021-01487-6

    Article  CAS  Google Scholar 

  11. Zaky ZA, Aly AH (2012) Novel smart window using photonic crystal for energy saving. Sci Rep 12:10104

    CAS  Google Scholar 

  12. Aly AH, Ghany S-SA, Fadlallah M, Salman F, Kamal B (2015) Transmission and temperature sensing characteristics of a binary and ternary photonic band gap. J Nanoelectron Optoelectron 10:9–14

    Article  CAS  Google Scholar 

  13. Frohnhoff S, Berger MG (1994) Porous silicon superlattices. Adv Mater 6:963–965. https://doi.org/10.1002/adma.19940061214

    Article  CAS  Google Scholar 

  14. Ye Y, Xie M, Tang J, Ouyang J (2019) Highly sensitive and tunable terahertz biosensor based on optical Tamm states in graphene-based Bragg reflector. Results in Physics 15:102779. https://doi.org/10.1016/j.rinp.2019.102779

    Article  Google Scholar 

  15. Zaky ZA, Singh MR, Aly AH (2022) Tamm resonance excited by different metals and graphene. Photon Nanostruct Fund Appl 49;100995. https://doi.org/10.1016/j.photonics.2022.100995

  16. Aly AH, Zaky ZA (2019) Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 104:102991. https://doi.org/10.1016/j.cryogenics.2019.102991

    Article  CAS  Google Scholar 

  17. Zaky ZA, Aly AH (2020) Theoretical study of a tunable low-temperature photonic crystal sensor using dielectric-superconductor nanocomposite layers. J Supercond Novel Magn 33:2983–2990. https://doi.org/10.1007/s10948-020-05584-1

    Article  CAS  Google Scholar 

  18. Abd El-Ghany SE, Noum WM, Matar Z, Zaky ZA, Aly AH (2020) Optimized bio-photonic sensor using 1D-photonic crystals as a blood hemoglobin sensor. Physica Scripta 96:035501. https://doi.org/10.1088/1402-4896/abd49c

  19. Aly AH, Mohamed D, Zaky ZA, Matar ZS, Abd El-Gawaad NS, Shalaby AS et al (2021) Novel biosensor detection of tuberculosis based on photonic band gap materials. Mater Res Ibero Am J Mater 24:e20200483. https://doi.org/10.1590/1980-5373-MR-2020-0483

  20. Zaky ZA, Aly AH, Moustafa B (2021) Plasma cell sensor using photonic crystal cavity. Opt Quant Electron 53:591. https://doi.org/10.1007/s11082-021-03201-6

    Article  CAS  Google Scholar 

  21.  Zaky ZA, Sharma A, Alamri S, Saleh N, Aly AH (2021) Detection of fat concentration in milk using ternary photonic crystal. Silicon. https://doi.org/10.1007/s12633-021-01379-8

  22. Afsheen S, Iqbal T, Aftab M, Bashir A, Tehseen A, Khan MY et al (2019) Modeling of 1D Au plasmonic grating as efficient gas sensor. Materials Research Express 6:126203. https://doi.org/10.1088/2053-1591/ab553b

    Article  CAS  Google Scholar 

  23. Yousefi M, Mozaffari N, Shirkani H (2022) Modeling of near-infrared SPR sensors based on silver-graphene asymmetric grating and investigation of their capability of gases detection. Physica E 135:114987

    Article  CAS  Google Scholar 

  24. Meradi KA, Tayeboun F, Guerinik A, Zaky ZA, Aly AH (2022) Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization. Opt Quant Electron 54:1–11. https://doi.org/10.1007/s11082-021-03504-8

    Article  CAS  Google Scholar 

  25. Zaky ZA, Sharma A, Alamri S, Aly AH (2021) Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm-Fano resonance in one-dimensional photonic crystals. Appl Nanosci 11:2261–2270. https://doi.org/10.1007/s13204-021-01965-7

    Article  CAS  Google Scholar 

  26. Zaky ZA, Amer HA, Suthar B, Aly AH (2022) Gas sensing applications using magnetized cold plasma multilayers. Opt Quant Electron 54:217. https://doi.org/10.1007/s11082-022-03594-y

    Article  CAS  Google Scholar 

  27. González-García L, Colodrero S, Míguez H, González-Elipe AR (2015) Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO 2 layers to improve DSC efficiency. Opt Express 23:A1642–A1650. https://doi.org/10.1364/OE.23.0A1642

    Article  PubMed  Google Scholar 

  28. Panda A, Pukhrambam PD, Wu F, Belhadj W (2021) Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. The European Physical Journal Plus 136:809. https://doi.org/10.1140/epjp/s13360-021-01796-z

    Article  CAS  Google Scholar 

  29. Tammam MT, Zaky ZA, Sharma A, Matar ZS, Aly AH, Mohaseb MA (2021) Defected photonic crystal array using porous GaN as malaria sensor presented at the IOP Conference series. Mater Sci Eng. https://doi.org/10.1088/1757-899X/1171/1/012005

  30. Zaky ZA, Sharma A, Aly AH (2021) Tamm plasmon polariton as refractive index sensor excited by gyroid metals/porous Ta2O5 photonic crystal. Plasmonics 17:681–691. https://doi.org/10.1007/s11468-021-01559-7

  31. Zaky ZA, Panda A, Pukhrambam PD, Aly AH (2022) The impact of magnetized cold plasma and its various properties in sensing applications. Sci Rep 12:3754. https://doi.org/10.1038/s41598-022-07461-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aly AH, Awasthi S, Mohamed A, Matar Z, Mohaseb M, Al-Dossari M et al (2021) Detection of reproductive hormones in females by using 1D photonic crystal-based simple reconfigurable biosensing design. Curr Comput-Aided Drug Des 11:1533. https://doi.org/10.3390/cryst11121533

    CAS  Google Scholar 

  33. Panda A, Pukhrambam PD (2021) A theoretical proposal of high performance blood components biosensor based on defective 1D photonic crystal employing WS2, MoS2 and graphene. Opt Quant Electron 53:1–19. https://doi.org/10.1007/s11082-021-03012-9

    Article  CAS  Google Scholar 

  34. Zaky ZA, Sharma A, Alamri S, Aly AH (2021) Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm–Fano resonance in one-dimensional photonic crystals. Appl Nanosci 11: 2261–2270. https://doi.org/10.1007/s13204-021-01965-7

    CAS  Google Scholar 

  35. Mbakop FK, Djongyang N, Ejuh GW, Raїdandi D, Woafo P (2017) Transmission of light through an optical filter of a one-dimensional photonic crystal: application to the solar thermophotovoltaic system. Physica B 516:92–99. https://doi.org/10.1016/j.physb.2017.04.033

    Article  CAS  Google Scholar 

  36. Panda A, Devi PP (2020) Photonic crystal biosensor for refractive index based cancerous cell detection. Opt Fiber Technol 54:102123. https://doi.org/10.1016/j.yofte.2019.102123

    Article  CAS  Google Scholar 

  37. Lheureux G, Monavarian M, Anderson R, DeCrescent RA, Bellessa J, Symonds C et al (2020) Tamm plasmons in metal/nanoporous GaN distributed Bragg reflector cavities for active and passive optoelectronics. Opt Express 28:17934–17943. https://doi.org/10.1364/OE.392546

    Article  CAS  PubMed  Google Scholar 

  38. Adams M, Cemlyn B, Henning I, Parker M, Harbord E, Oulton R (2019) Model for confined Tamm plasmon devices. JOSA B 36:125–130. https://doi.org/10.1364/JOSAB.36.000125

    Article  CAS  Google Scholar 

  39. Hohenester U (2015) Quantum corrected model for plasmonic nanoparticles: a boundary element method implementation. Phys Rev B 91:205436. https://doi.org/10.1103/PhysRevB.91.205436

    Article  CAS  Google Scholar 

  40. Juneau-Fecteau A, Savin R, Boucherif A, Fréchette LG (2021) A practical Tamm plasmon sensor based on porous Si. AIP Adv 11:065305. https://doi.org/10.1063/5.0054629

    Article  CAS  Google Scholar 

  41. Zaky ZA, Aly AH (2021) Modeling of a biosensor using Tamm resonance excited by graphene. Appl Opt 60:1411–1419. https://doi.org/10.1364/AO.412896

    Article  PubMed  Google Scholar 

  42. Islam MI, Ahmed K, Asaduzzaman S, Paul BK, Bhuiyan T, Sen S et al (2017) Design of single mode spiral photonic crystal fiber for gas sensing applications. Sensing and Bio-Sensing Research 13:55–62. https://doi.org/10.1016/j.sbsr.2017.03.001

    Article  Google Scholar 

  43. Turner C, Walton C, Hoashi S, Evans M (2009) Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J Breath Res 3:046004. https://doi.org/10.1088/1752-7155/3/4/046004

    Article  CAS  PubMed  Google Scholar 

  44. Zaky ZA, Ahmed AM, Shalaby AS, Aly AH (2020) Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: theoretical optimisation. Sci Rep 10:9736. https://doi.org/10.1038/s41598-020-66427-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jágerská J, Zhang H, Diao Z, Le Thomas N, Houdré R (2010) Refractive index sensing with an air-slot photonic crystal nanocavity. Opt Lett 35:2523–2525. https://doi.org/10.1364/OL.35.002523

    Article  PubMed  Google Scholar 

  46. Hua-Jun Z (2012) High sensitivity refractive index gas sensing enhanced by surface plasmon resonance with nano-cavity antenna array. Chin Phys B 21:087104. https://doi.org/10.1088/1674-1056/21/8/087104

    Article  Google Scholar 

  47. Paul BK, Ahmed K, Dhasarathan V, Al-Zahrani FA, Aktar MN, Uddin MS et al (2020) Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber. Alex Eng J 59:5045–5052. https://doi.org/10.1016/j.aej.2020.09.030

    Article  Google Scholar 

  48. Anamoradi A, Fasihi K (2019) A highly sensitive optofluidic-gas sensor using two dimensional photonic crystals. Superlattices Microstruct 125:302–309. https://doi.org/10.1016/j.spmi.2018.11.019

    Article  CAS  Google Scholar 

  49. Bouzidi A, Bria D, Akjouj A, Pennec Y, Djafari-Rouhani B (2015) A tiny gas-sensor system based on 1D photonic crystal. J Phys D Appl Phys 48:495102. https://doi.org/10.1088/0022-3727/48/49/495102

    Article  CAS  Google Scholar 

  50. Habli O, Bouazzi Y, Kanzari M (2019) Gas sensing using one-dimensional photonic crystal nanoresonators. Progress In Electromagnetics Research C 92:251–263. https://doi.org/10.2528/PIERC19011106

    Article  CAS  Google Scholar 

  51. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H et al (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715. https://doi.org/10.1038/nmat2810

    Article  CAS  PubMed  Google Scholar 

  52. Banerjee A (2009) Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures. Progress In Electromagnetics Research 11:129–137. https://doi.org/10.2528/PIERL09080101

    Article  Google Scholar 

  53. Shah K, Sharma NK, Sajal V (2018) Analysis of fiber optic SPR sensor utilizing platinum based nanocomposites. Opt Quant Electron 50:1–10. https://doi.org/10.1007/s11082-018-1533-x

    Article  CAS  Google Scholar 

  54. Yeh P (1988) Optical waves in layered media: Wiley New York

  55. Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: Elsevier

  56. Panda A, Pukhrambam PD (2021) Analysis of GaN-based 2D photonic crystal sensor for real-time detection of alcohols. Braz J Phys 51:481–492. https://doi.org/10.1007/s13538-021-00856-0

    Article  CAS  Google Scholar 

  57. Panda A, Pukhrambam PD (2021) Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria. Physica B 607:412854. https://doi.org/10.1016/j.physb.2021.412854

    Article  CAS  Google Scholar 

  58. Zaky ZA, Sharma A, Aly AH (2021) Gyroidal graphene for exciting Tamm plasmon polariton as refractive index sensor: theoretical study. Opt Mater 122:111684. https://doi.org/10.1016/j.optmat.2021.111684

    Article  CAS  Google Scholar 

  59. Chen ZH, Li W, Han Y, Jiang H, Hamamoto K (2019) Proposal of two tangent air hole structure for higher sensitivity gas sensor. Japan J Appl Phys 58:SJJD03. https://doi.org/10.7567/1347-4065/ab26ab

Download references

Acknowledgements

The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number R-2022-185.

Author information

Authors and Affiliations

Authors

Contributions

Z. A. Zaky invented the original idea for the study, implemented the computer code, performed the numerical simulations, co-analyzed the data, and co-wrote and revised the main manuscript text. A. Panda co-analyzed the data and co-wrote the main manuscript text. H. Hanafy discussed the results and supervised this work. P. D. Pukhrambam discussed the results and supervised this work. A. H. Aly discussed the results and supervised this work. All authors developed the final manuscript.

Corresponding authors

Correspondence to Zaky A. Zaky or Hassan Hanafy.

Ethics declarations

Research involving Human and Animal Participants

This article does not contain any studies involving animals or human participants performed by any of the authors.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaky, Z.A., Hanafy, H., Panda, A. et al. Design and Analysis of Gas Sensor Using Tailorable Fano Resonance by Coupling Between Tamm and Defected Mode Resonance. Plasmonics 17, 2103–2111 (2022). https://doi.org/10.1007/s11468-022-01699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01699-4

Keywords

Navigation