Skip to main content
Log in

Numerical Analysis of Laterally and Vertically Coupled Hybrid Plasmonic Modes in Silicon Tip

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Hybrid plasmonic waveguides have emerged as one of the most emerging tools for long-range subwavelength optical guidance. We propose the coupling of a hybrid plasmonic (HP) mode into a silicon tip. The HP mode is made to confine in the silicon tip through lateral as well as a vertical coupling, which provides moderately good field enhancement with long-range propagation. The lateral coupling exhibits a field enhancement of more than 200 in a silicon tip with a propagation length of 110 μm. Field enhancement in the vertically coupled case is 25 with a propagation length of 1.1 mm. In both cases, mode area remains around 50–60 nm2. In addition, both structures show broadband propagation of HP modes where propagation length remains long over a broad range wavelength. The proposed waveguide structures can be useful in realizing nanophotonic devices for broad range of applications including spectroscopy, optical fiber communication and bio-chemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The computer codes used during the current study are available from the corresponding author on reasonable request.

References

  1. Oulton RF, Sorger VJ, Genov DA et al (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2:496–500. https://doi.org/10.1038/nphoton.2008.131

    Article  CAS  Google Scholar 

  2. Oulton RF, Sorger VJ, Zentgraf T et al (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632. https://doi.org/10.1038/NATURE08364

    Article  CAS  PubMed  Google Scholar 

  3. Veronis G, Fan S (2007) Modes of subwavelength plasmonic slot waveguides. J Light Technol 25:2511–2521. https://doi.org/10.1109/JLT.2007.903544

    Article  Google Scholar 

  4. Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt Express 13:6645. https://doi.org/10.1364/OPEX.13.006645

    Article  PubMed  Google Scholar 

  5. Meier J, Aitchison JS, Mojahedi M, Alam MZ (2010) Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Opt Express 18(12):12971–12979. https://doi.org/10.1364/OE.18.012971

    Article  CAS  PubMed  Google Scholar 

  6. Gramotnev DK (2010) Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 42(4):83–91. https://doi.org/10.1038/nphoton.2009.282

    Article  CAS  Google Scholar 

  7. Rajput S, Kaushik V, Jain S et al (2020) Optical modulation in hybrid waveguide based on Si-ITO heterojunction. J Light Technol 38(6):1365–1371

    Article  CAS  Google Scholar 

  8. Mishra RD, Singh L, Rajput S et al (2021) Engineered nanophotonic waveguide with ultra-low dispersion. Appl Opt 60(16):4732–4737. https://doi.org/10.1364/AO.428534

    Article  PubMed  Google Scholar 

  9. Sharma T, Kumar M (2014) Hollow hybrid plasmonic waveguide for nanoscale optical confinement with long-range propagation. Appl Opt 53:1954. https://doi.org/10.1364/AO.53.001954

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Kumar P, Ranjan R (2022) Triangular shape hybrid metal-insulator-metal plasmonic waveguide for low propagation loss at deep subwavelength. IEEE Trans Nanotechnol 21:6–15. https://doi.org/10.1109/TNANO.2021.3130796

    Article  CAS  Google Scholar 

  11. Alam MZ, Aitchison JS, Mojahedi M (2014) A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photon Rev 8:394–408. https://doi.org/10.1002/LPOR.201300168

    Article  CAS  Google Scholar 

  12. Dai D, He S (2009) A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17:16646. https://doi.org/10.1364/OE.17.016646

    Article  CAS  PubMed  Google Scholar 

  13. Aitchison JS, Alam MZ, Sun X, Mojahedi M (2012) Hybrid plasmonic waveguides for on-chip polarization control. Front Opt 2012/Laser Sci XXVIII (2012), Pap FTh3A1 FTh3A.1. https://doi.org/10.1364/FIO.2012.FTH3A.1

  14. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404. https://doi.org/10.1103/physrevlett.93.137404

    Article  PubMed  Google Scholar 

  15. Sharma T, Kumar M (2015) Hybridization of plasmonic and photonic modes for subwavelength optical confinement with longer propagation and variable nonlinearity. Opt Commun 343:85–90. https://doi.org/10.1016/J.OPTCOM.2014.12.083

    Article  CAS  Google Scholar 

  16. Singh L, Sulabh KV et al (2021) Light assisted electro-metallization in resistive switch with optical accessibility. J Light Technol 39:5869–5874. https://doi.org/10.1109/JLT.2021.3091970

    Article  CAS  Google Scholar 

  17. Zhang B, Bian Y, Ren L et al (2017) Hybrid dielectric-loaded nanoridge plasmonic waveguide for low-loss light transmission at the subwavelength scale. Sci Reports 71(7):1–9. https://doi.org/10.1038/srep40479

    Article  CAS  Google Scholar 

  18. Chu HS, Li EP, Bai P, Hegde R (2010) Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett 96:221103. https://doi.org/10.1063/1.3437088

    Article  CAS  Google Scholar 

  19. Alam MZ, Bahrami F, Aitchison JS, Mojahedi M (2014) Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing. IEEE Photonics J. https://doi.org/10.1109/JPHOT.2014.2331232

    Article  Google Scholar 

  20. Huang W-P, Li Y (2015) Electrically-pumped plasmonic lasers based on low-loss hybrid SPP waveguide. Opt Express 23(19):24843–24849. https://doi.org/10.1364/OE.23.024843

    Article  PubMed  Google Scholar 

  21. Weber-Bargioni A, Yablonovitch E, Bokor J et al (2013) Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips. Opt Express 21(7):8166–8176. https://doi.org/10.1364/OE.21.008166

    Article  PubMed  Google Scholar 

  22. Sharma T, Singh L, Kumar M (2016) Nanophotonic ultrashort coupler based on hybrid plasmonic waveguide with lateral subwavelength grating. IEEE Trans Nanotechnol 15:931–935. https://doi.org/10.1109/TNANO.2016.2611519

    Article  CAS  Google Scholar 

  23. Pile DFP, Ogawa T, Gramotnev DK et al (2005) Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87:061106. https://doi.org/10.1063/1.1991990

    Article  CAS  Google Scholar 

  24. Nerkararyan KV (1997) Superfocusing of a surface polariton in a wedge-like structure. Phys Lett A 237:103–105. https://doi.org/10.1016/s0375-9601(97)00722-6

    Article  CAS  Google Scholar 

  25. Kumar S, Kumar P, Ranjan R (2021) A metal-cap wedge shape hybrid plasmonic waveguide for nano-scale light confinement and long propagation range. Plasmonics. https://doi.org/10.1007/S11468-021-01502-W

    Article  Google Scholar 

  26. Lu Q, Zou CL, Chen D et al (2014) Extreme light confinement and low loss in triangle hybrid plasmonic waveguide. Opt Commun 319:141–146. https://doi.org/10.1016/J.OPTCOM.2013.12.072

    Article  CAS  Google Scholar 

  27. Zhang B, Xu J, Li K et al (2019) Field-enhanced nanofocusing of radially polarized light by a tapered hybrid plasmonic waveguide with periodic grooves. Appl Opt 58(3):588–592. https://doi.org/10.1364/AO.58.000588

    Article  PubMed  Google Scholar 

  28. Singh L, Sharma T, Kumar M (2018) Controlled hybridization of plasmonic and optical modes for low-loss nano-scale optical confinement with ultralow dispersion. IEEE J Quantum Electron. https://doi.org/10.1109/JQE.2018.2809461

    Article  Google Scholar 

  29. Chen R, Tran TTD, Ng KW et al (2011) Nanolasers grown on silicon. Nat Photonics 5:170–175. https://doi.org/10.1038/NPHOTON.2010.315

    Article  CAS  Google Scholar 

  30. Ye L, Xiao Y, Liu Y et al (2016) Strongly confined spoof surface plasmon polaritons waveguiding enabled by planar staggered plasmonic waveguides. Sci Rep 6:38528. https://doi.org/10.1038/srep38528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh L, Tidke S, Kumar M (2019) Guiding and controlling light at nanoscale in field effect transistor. Appl Phys B Lasers Opt 125:1–7. https://doi.org/10.1007/S00340-019-7202-3/FIGURES/6

    Article  Google Scholar 

  32. Sulabh, Singh L, Jain S, Kumar M (2021) Nanophotonic device based on fano resonance in engineered slot waveguide for optical detection of viral infections. IEEE Sens J 21:2805–2812. https://doi.org/10.1109/JSEN.2020.3023146

    Article  CAS  Google Scholar 

  33. Zhu L (2010) Modal properties of hybrid plasmonic waveguides for nanolaser applications. IEEE Photonics Technol Lett 22:535–537. https://doi.org/10.1109/LPT.2010.2041923

    Article  Google Scholar 

  34. Xiao J, Wei QQ, Yang DG et al (2016) A CMOS-compatible hybrid plasmonic slot waveguide with enhanced field confinement. IEEE Electron Device Lett 37:456–458. https://doi.org/10.1109/LED.2016.2531990

    Article  CAS  Google Scholar 

  35. Jiang Y, Shi C, Wang J (2020) A hybrid plasmonic terahertz waveguide with ridge structure base on Bulk-Dirac-semimetal. Opt Commun 475:126239. https://doi.org/10.1016/J.OPTCOM.2020.126239

    Article  CAS  Google Scholar 

  36. Dai D, Wu H, Zhang W (2015) Utilization of field enhancement in plasmonic waveguides for subwavelength light-guiding, polarization handling, heating, and optical sensing. Materials (Basel) 8:6772–6791. https://doi.org/10.3390/MA8105341

    Article  CAS  Google Scholar 

  37. Bian Y, Gong Q (2014) Bow-tie hybrid plasmonic waveguides. J Light Technol 32:4504–4509. https://doi.org/10.1109/JLT.2014.2359916

    Article  CAS  Google Scholar 

  38. Wang J, Guo YX, Huang BH et al (2019) A silicon-based hybrid plasmonic waveguide for nano-scale optical confinement and long range propagation. IEEE Trans Nanotechnol 18:437–444. https://doi.org/10.1109/TNANO.2019.2911333

    Article  Google Scholar 

  39. Choo H, Kim MK, Staffaroni M et al (2012) Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photonics 612(6):838–844. https://doi.org/10.1038/nphoton.2012.277

    Article  CAS  Google Scholar 

  40. Guclu C, Capolino F, Darvishzadeh-Varcheie M et al (2016) Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide. Opt Express 24(25):28337–28352. https://doi.org/10.1364/OE.24.028337

    Article  PubMed  Google Scholar 

Download references

Funding

The work is supported by Science and Engineering Research Board (SERB) with grant no. CRG/2020/000144 and from Council of Scientific and Industrial Research (CSIR) with grant no. 22(0840)/20/EMR-II.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and M.K. conceptualized the device and conducted a theoretical analysis. The numerical analysis on lateral coupling was carried out by S.K., S.R., and R.D.M. The vertical coupling analysis was done by S.K., V.K., and P.B. R.R. provided partial technical suggestions and helped in finalizing the manuscript. M.K. guided the entire computational process. S.K. and M.K. conducted the data analysis and wrote the manuscript.

Corresponding author

Correspondence to Santosh Kumar.

Ethics declarations

Ethics Approval

I have read Plasmonics’s Ethical Guidelines and state that I have not violated them in any way.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Rajput, S., Kaushik, V. et al. Numerical Analysis of Laterally and Vertically Coupled Hybrid Plasmonic Modes in Silicon Tip. Plasmonics 17, 1699–1707 (2022). https://doi.org/10.1007/s11468-022-01657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01657-0

Keywords

Navigation