Skip to main content
Log in

Color Properties of Silver Nanoparticle Composites

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In order to investigate tunable color materials comprising metallic nanospheres, we investigated the color response of structures formed by periodic arrangements of silver nanoparticles. We use different approaches to model the dielectric function of silver in order to analyze the differences introduced in the reflection and transmission spectra and, consequently, in the obtained color. To calculate the spectral response, we use the KKR method, widely used to model structures comprising layers of periodically arranged spheres. The results obtained show the relevance of the model used for the dielectric function of silver for an accurate prediction of the color produced by systems composed of nanoparticles of different sizes and filling fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that this work is based upon is available from the corresponding author upon reasonable request.

References

  1. Maier SA (2007) Plasmonics: Fundamentals and Applications. Springer Science+Business Media LLC, New York

    Book  Google Scholar 

  2. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293

    Article  CAS  Google Scholar 

  3. Dhara S, Kesavamoorthy R, Magudapathy P, Premila M, Panigrahi BK, Nair KGM, Wu CT, Chen KH, Chen LC (2003) “Quasiquenching size effects in gold nanoclusters embedded in silica matrix. Chem Phys Lett 370:254

    Article  CAS  Google Scholar 

  4. Dhara S (2015) Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles, in Reviews in Plasmonics, Chris D. Geddes ed., Springer International Publishing Switzerland

  5. Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14:4499

    Article  CAS  Google Scholar 

  6. Rezaei SD, Dong Z, Chan JYE, Trisno J, Ng RJH, Ruan Q, Qiu C-W, Mortensen NA, Yang JKW (2021) Nanophotonic structural colors. ACS Photonics 8:18

  7. Kumar K, Duan H, Hedge RS, Koh SCW, Wei JN, Yang JKW (2012) Printing colour at the optical diffraction limit. Nat Nanotechnol 7:557

  8. Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM, Kumar K, Qiu C-W, Yang JKW (2014) Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14:4023

    Article  CAS  Google Scholar 

  9. Fudouzi H (2011) Tunable structural color in organisms and photonic materials for design of bioinspired materials. Sci Technol Adv Mater 12

  10. Ding T, Ruttiger C, Zheng X, Benz F, Ohadi H, Vandenbosch GAE, Moshchalkov VV, Gallei M, Baumberg JJ (2016) Fast dynamic color switching in temperature-responsive plasmonic films. Adv Opt Mater 4:877

    Article  CAS  Google Scholar 

  11. Wang G, Chen X, Liu S, Wong C, Chu S (2016) Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10:1788

    Article  CAS  Google Scholar 

  12. Gao Y, Huang C, Hao C, Sun S, Zhang L, Zhang C, Duan Z, Wang K, Jin Z, Zhang N, Kildishev AV, Qiu C-W, Song Q, Xiao S (2018) Lead halide perovskite nanostructures for dynamic color display. ACS Nano 12:8847

    Article  CAS  Google Scholar 

  13. Han X, Liu Y, Yin Y (2014) Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett 14:2466

    Article  CAS  Google Scholar 

  14. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034

    Article  CAS  Google Scholar 

  15. Lendlein A, Behl M (2010) Shape memory polymers. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  16. Schauer S, Baumberg JJ, Hoelscher H, Smoukov SK (2018) Tuning of structural colors like a chameleon enabled by shape memory polymers. Macromol Rapid Commun 39:1800518

    Article  Google Scholar 

  17. Bohren CF, Huffman DR (1983) Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York

    Google Scholar 

  18. Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710

    Article  CAS  Google Scholar 

  19. Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical grains. Astrophys J 186:705

  20. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302

    Article  Google Scholar 

  21. Jin J-M (2015) The Finite Element Method in Electromagnetics. John Wiley & Sons, New York

    Google Scholar 

  22. Yannopapas V, Modinos A, Stefanou N (1999) Optical properties of metallodielectric photonic crystals. Phys Rev B 60:5359

    Article  CAS  Google Scholar 

  23. Stefanou N, Yannopapas V, Modinos A (1998) Heterostructures of photonic crystals: frequency bands and transmission coefficients. Comput Phys 113:49

    Article  CAS  Google Scholar 

  24. Stefanou N, Yannopapas V, Modinos A (2000) Multem 2: a new version of the program for transmission and band structure calculations of photonic crystals. Comput Phys Commun 132:189

    Article  CAS  Google Scholar 

  25. Dorado LA, Depine RA, Lozano G, Míguez H (2007) Physical origin of the high energy optical response of three dimensional photonic crystals. Opt Express 15:17754

    Article  Google Scholar 

  26. Ortiz G, Inchaussandague M, Skigin D, Depine R, Mochán WL (2014) Effective non-retarded method as a tool for the design of tunable nanoparticle composite absorbers. J Opt 16:105012

  27. Yannopapas V (2017) An atomistic-electrodynamics theory for the optical response of periodic lattices of metallic nanoparticles in the quantum size regime. Int J Mod Phys B 31:1740001

    Google Scholar 

  28. García de Abajo FJ (2008) Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 112:17983

    Article  Google Scholar 

  29. Zuloaga J, Prodan E, Nordlander P (2009) Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 9:887

    Article  CAS  Google Scholar 

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  31. Drude P (1900) Zur elektronentheorie der metalle. Ann Phys 1:566

    Article  CAS  Google Scholar 

  32. Yang HU, D’Archangel J, Sundheimer ML, Tucker E, Boreman GD, Raschke MB (2015) Optical dielectric function of silver. Phys Rev B 91:235137

  33. Bigot J, Merle J, Cregut O, Daunois A (1995) Electron dinamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys Rev Lett 75:4702

    Article  CAS  Google Scholar 

  34. Kreibig U, Fragstein CV (1969) The limitation of electron mean free path in small silver particles. Z Phys 224:307

    Article  CAS  Google Scholar 

  35. Barchiesi D, Grosges T (2014) Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth. J Nanophotonics 8:083097

  36. Yannopapas V, Modinos A, Stefanou N (2002) Scattering and absorption of light by periodic and nearly periodic metallodielectric structures. Opt Quantum Electron 34:227

    Article  Google Scholar 

  37. Herrera LJM, Arboleda DM, Schinca DC, Scaffardi LB (2014) Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles. J Appl Phys 116:233105

  38. Sánchez VM, Martínez ED, Ricci MLM, Troiani H, Soler-Illia GJAA (2013) Optical properties of Au nanoparticles included in mesoporous \(TiO_2\) thin films: a dual experimental and modeling study. J Phys Chem C 117:7246

    Article  Google Scholar 

  39. Santillán JMJ, Videla FA, van Raap MBF, Muraca D, Scaffardi LB, Schinca DC (2013) Influence of size-corrected bound-electron contribution on nanometric silver dielectric function: sizing through optical extinction spectroscopy. J Phys D: Appl Phys 46:435301

  40. Lozano R (1978) El Color y su Medición. Américalee, Buenos Aires

    Google Scholar 

  41. Reinhard E, Khan EA, Akyüz AO, Johnson GM (2008) Color Imaging: Fundamentals and Applications. A K Peters Ltd, Massachusetts

    Book  Google Scholar 

  42. Arboleda DM, Lester M, Dalfovo M, Skigin D, Inchaussandague M, Ibañez F (2020) Theory of optical coupling effects among surfactant Au NP films. Plasmonics 15:1243

Download references

Funding

The authors acknowledge partial support from Universidad de Buenos Aires (UBACyT 20020150100028BA and 20020190100108BA) and CONICET (PIP 11220170100633CO).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the presented idea. C. N. D. developed the theory and performed the simulations. M.E.I. and D.C.S. supervised the findings of this work. All authors discussed the results and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Diana C. Skigin.

Ethics declarations

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ambrosio, C.N., Inchaussandague, M.E. & Skigin, D.C. Color Properties of Silver Nanoparticle Composites. Plasmonics 17, 31–42 (2022). https://doi.org/10.1007/s11468-021-01493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01493-8

Keywords

Navigation