Skip to main content
Log in

Mono-Rectangular Core Photonic Crystal Fiber (MRC-PCF) for Skin and Blood Cancer Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper reports a novel approach for the efficient detection of blood and skin cancerous cells using PCF-based sensor. The proposed sensor contains an asymmetrical arrangement of rectangular holes where the core region is composed of a single rectangle. Zeonex is used as the fiber substance. The model is structured and numerically analyzed using the finite element method (FEM)-based software. The simulation of the proposed model validates its efficiency in cancer cell detection. Several performance parameters suggest that the proposed sensor attains optimum results at 2.0 THz. At this point, the sensitivities achieved in detecting blood cancer cells, normal cell (Jurkat), skin cancer cell, normal cell (basal), and water are 96.74, 96.56, 96.61, 96.34, and 95.69%, respectively. Besides, simulation results also suggest that the material and confinement loss are very low for this proposed sensor. Additionally, the simple rectangle-based model provides the ease of fabrication introducing prevailing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The guiding properties of the proposed sensor is numerically investigate by FEM-based software.

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 70 (1):7–30. https://doi.org/10.3322/caac.21590

  2. Society AC (2019) Breast cancer facts & figures 2019–2020. Am Cancer Soc:1–44

  3. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    Article  CAS  Google Scholar 

  4. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3(4):413–438

    Article  Google Scholar 

  5. Liang X, Liu A, Lim C, Ayi T, Yap P (2007) Determining refractive index of single living cell using an integrated microchip. Sens Actuators, A Phys 133(2):349–354

    Article  CAS  Google Scholar 

  6. Dengel LT, Petroni GR, Judge J, Chen D, Acton ST, Schroen AT, Slingluff CL Jr (2015) Total body photography for skin cancer screening. Int J Dermatol 54(11):1250–1254

    Article  Google Scholar 

  7. Liu S, Li L, Chen Z, Chen N, Dai Z, Huang J, Lu B (2014) Surface-enhanced Raman spectroscopy measurement of cancerous cells with optical fiber sensor. Chin Opt Lett 12(s1):S13001

    Article  Google Scholar 

  8. Li FR, Li Q, Zhou HX, Qi H, Deng CY (2013) Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-RT-PCR. Nanomed Nanotechnol Biol Med 9(7):1106–1113

    Article  CAS  Google Scholar 

  9. Hajba L, Guttman A (2014) Circulating tumor-cell detection and capture using microfluidic devices. TrAC, Trends Anal Chem 59:9–16

    Article  CAS  Google Scholar 

  10. Zhou J, Zheng Y, Liu J, Bing X, Hua J, Zhang H (2016) A paper-based detection method of cancer cells using the photo-thermal effect of nanocomposite. J Pharm Biomed Anal 117:333–337

    Article  CAS  Google Scholar 

  11. Zaytsev KI, Kudrin KG, Reshetov IV, Gavdush AA, Chernomyrdin NV, Karasik VE, Yurchenko SO In vivo spectroscopy of healthy skin and pathology in terahertz frequency range. In: Journal of Physics: Conference Series, 2015. p 012023

  12. Neugebauer U, Clement JH, Bocklitz T, Krafft C, Popp J (2010) Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J Biophotonics 3(8–9):579–587

    Article  CAS  Google Scholar 

  13. Ney M, Abdulhalim I (2015) Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range. J of Biomed Opt 20(12):125007

    Article  Google Scholar 

  14. Soylemez S, Udum YA, Kesik M, Hızlıateş CG, Ergun Y, Toppare L (2015) Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sensors and Actuators B: Chemical 212:425–433

    Article  CAS  Google Scholar 

  15. Sun D, Guo T, Ran Y, Huang Y, Guan B-O (2014) In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens Bioelectron 61:541–546

    Article  CAS  Google Scholar 

  16. An G, Li S, An Y, Wang H, Zhang X (2017) Glucose sensor realized with photonic crystal fiber-based Sagnac interferometer. Optics Communications 405:143–146

    Article  CAS  Google Scholar 

  17. Al Mahfuz M, Mollah MA, Momota MR, Paul AK, Masud A, Akter S, Hasan MR (2019) Highly sensitive photonic crystal fiber plasmonic biosensor: design and analysis. Opt Mater 90:315–321

    Article  Google Scholar 

  18. Jepsen PU, Møller U, Merbold H (2007) Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Opt Express 15(22):14717–14737

    Article  CAS  Google Scholar 

  19. Jepsen PU, Jensen JK, Møller U (2008) Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy. Opt Express 16(13):9318–9331

    Article  CAS  Google Scholar 

  20. Ahmed K, Ahmed F, Roy S, Paul BK, Aktar MN, Vigneswaran D, Islam MS (2019) Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens J 19(9):3368–3375

    Article  CAS  Google Scholar 

  21. Islam MS, Sultana J, Ahmed K, Islam MR, Dinovitser A, Ng BW-H, Abbott D (2017) A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens J 18(2):575–582

    Article  Google Scholar 

  22. Hossain MB, Podder E, Bulbul AA-M, Mondal HS (2020) Bane chemicals detection through photonic crystal fiber in THz regime. Optical Fiber Technology 54:102102

    Article  CAS  Google Scholar 

  23. Panda A, Devi PP (2020) Photonic crystal biosensor for refractive index based cancerous cell detection. Optical Fiber Technology 54:102123

    Article  CAS  Google Scholar 

  24. Ayyanar N, Raja GT, Sharma M, Kumar DS (2018) Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens J 18(17):7093–7099

    Article  CAS  Google Scholar 

  25. Jabin MA, Ahmed K, Rana MJ, Paul BK, Islam M, Vigneswaran D, Uddin MS (2019) Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J 11(4):1–10

    Article  Google Scholar 

  26. Islam MS, Sultana J, Atai J, Abbott D, Rana S, Islam MR (2017) Ultra low-loss hybrid core porous fiber for broadband applications. Appl Opt 56(4):1232–1237

    Article  CAS  Google Scholar 

  27. Shephard J, MacPherson W, Maier R, Jones J, Hand D, Mohebbi M, George A, Roberts P, Knight J (2005) Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Opt Express 13(18):7139–7144

    Article  CAS  Google Scholar 

  28. Pryor RW (2009) Multiphysics modeling using COMSOL®: a first principles approach. Jones & Bartlett Publishers,

  29. Ghazanfari A, Li W, Leu MC, Hilmas GE (2017) A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit Manuf 15:102–112

    Google Scholar 

  30. Bise RT, Trevor DJ Sol-gel derived microstructured fiber: fabrication and characterization. In: Optical Fiber Communication Conference, 2005. Optical Society of America, p OWL6

  31. Ebendorff-Heidepriem H, Schuppich J, Dowler A, Lima-Marques L, Monro TM (2014) 3D-printed extrusion dies: a versatile approach to optical material processing. Opt Mater Express 4(8):1494–1504

    Article  Google Scholar 

  32. Cubillas AM, Unterkofler S, Euser TG, Etzold BJ, Jones AC, Sadler PJ, Wasserscheid P, Russell PSJ (2013) Photonic crystal fibres for chemical sensing and photochemistry. Chem Soc Rev 42(22):8629–8648

    Article  CAS  Google Scholar 

  33. Yang T, Ding C, Ziolkowski R, Guo YJ (2019) A THz Single-Polarization-Single-Mode (SPSM) photonic crystal fiber based on epsilon-near-zero material, vol 11200. SPIE, ANZCOP

    Google Scholar 

  34. Abdullah Al-Mamun B, Rayhan Habib J, Sumon Kumar D, Tonmoy R, Md. Avijit S, Md. Bellal H, (2020) PCF based formalin detection by exploring the optical properties in THz regime. Nanoscience & Nanotechnology-Asia 10:1–8. https://doi.org/10.2174/2210681210999200525171303

    Article  Google Scholar 

  35. Abdullah Al-MamunMd. Bellal H, Rahul D, Mahadi H, B (2020) Zeonex-based tetra-rectangular core-photonic crystal fiber for NaCl detection. Nanoscience & Nanotechnology-Asia 10:1–9. https://doi.org/10.2174/2210681210999200708141725

    Article  Google Scholar 

  36. Tzolov VP, Fontaine M, Godbout N, Lacroix S (1995) Nonlinear self-phase-modulation effects: a vectorial first-order perturbation approach. Opt Lett 20(5):456–458

    Article  CAS  Google Scholar 

  37. Islam MS, Sultana J, Ahmed K, Islam MR, Dinovitser A, Ng BW, Abbott D (2018) A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens J 18(2):575–582. https://doi.org/10.1109/JSEN.2017.2775642

    Article  CAS  Google Scholar 

  38. Islam MS, Sultana J, Dinovitser A, Ahmed K, Ng BWH, Abbott D (2018) Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Optics Communications 426:341–347. https://doi.org/10.1016/j.optcom.2018.05.030

    Article  CAS  Google Scholar 

  39. Shaymaa Riyadh T, Hadeel KA (2020) Sensing of Illegal Drugs by Using Photonic Crystal Fiber in Terahertz Regime. Journal of Optical Communications (0). https://doi.org/10.1515/joc-2019-0291

Download references

Acknowledgments

This manuscript has not been published yet and not even under consideration for publication elsewhere. The authors are grateful who have participated in this research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization; Abdullah Al-Mamun Bulbul, Ahmed Nabih Zaki Rashed; data curation formal analysis investigation Abdullah Al-Mamun Bulbul, Etu Podder; methodology Abdullah Al-Mamun Bulbul, Etu Podder, Abdullah Al-Mamun Bulbul, Ahmed Nabih Zaki Rashed; resources software Abdullah Al-Mamun Bulbul, Etu Podder; supervision validation Abdullah Al-Mamun Bulbul, Mahmoud M. A. Eid, Ahmed Nabih Zaki Rashed; visualization writing original draft, Mahmoud M. A. Eid, Ahmed Nabih Zaki Rashed, Abdullah Al-Mamun Bulbul; writing review editing.

Corresponding author

Correspondence to Abdullah Al-Mamun Bulbul.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The corresponding author is responsible for ensuring that the descriptions are accurate and agreed by all authors.

Consent to Participate

Authors have contributed in multiple roles.

Consent for Publication

Authors have the opportunity with agreement to share an accurate and detailed description of their diverse contributions for publication in this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eid, M.M.A., Rashed, A.N.Z., Bulbul, A.AM. et al. Mono-Rectangular Core Photonic Crystal Fiber (MRC-PCF) for Skin and Blood Cancer Detection. Plasmonics 16, 717–727 (2021). https://doi.org/10.1007/s11468-020-01334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01334-0

Keywords

Navigation