Skip to main content
Log in

Generating Surface Plasmon Polariton Airy Beam with Dielectric Relief Holographical Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon polariton (SPP) Airy beams are very attractive in theory and applications. We propose a new method to design dielectric relief holographical structures for controlling the SPP wave propagations and generating SPP Airy beams on metal surface. In the dielectric relief holography (DRH) method, both phase and amplitude are considered. The thickness of designed dielelctric films is proportional to the intensity of SPPs interference in holography. The films designed by the DRH method are coated on metal surface and can control SPPs propagation effectively. The complicated Airy beams can also be generated through the films designed by the method. The finite difference time domain (FDTD) method is used to test the functionalities of the designed structures and find the optimal parameters. The structures designed by the DRH method can be manufactured with traditional die or corroding methods. The investigation on the method extends SPP device manufacture methods, and therefore may open up the possibility for mass industrial manufacture of plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berry MV, Balazs NL (1998) Nonspreading wave packets. Am J Phys 47(3):264–267

    Article  Google Scholar 

  2. Salandrino A, Christodoulides DN (2010) Airy plasmon: a non-diffracting surface wave. Opt Lett 35(12):2082–2084

    Article  PubMed  Google Scholar 

  3. Siviloglou GA, Christodoulides DN (2007) Accelerating finite energy airy beams. Opt Lett 32(8):979–981

    Article  PubMed  Google Scholar 

  4. Mazilu M, Dholakia K, Baumgartl J (2008) Optically mediated particle clearing using airy wavepackets. Nat Photonics 2(11):675–678

    Article  CAS  Google Scholar 

  5. Yang Y, Zang WP, Zhao ZY, Tian JG (2013) Morphology-dependent resonance of the optical forces on Mie particles in an airy beam. Opt Express 21(5):6186–6195

    Article  PubMed  Google Scholar 

  6. Ashkin A Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24(4):156–159

  7. Panagiotopoulos P, Papazoglou DG, Couairon A, Tzortzakis S (2013) Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat Commun 4(4):2622

    Article  CAS  PubMed  Google Scholar 

  8. Chong A, Renninger WH, Christodoulides DN, Wise FW (2010) Airy-bessel wave packets as versatile linear light bullets. Nat Photonics 4(2):103–106

    Article  CAS  Google Scholar 

  9. Abdollahpour D, Suntsov S, Papazoglou DG, Tzortzakis S (2010) Spatiotemporal airy light bullets in the linear and nonlinear regimes. Phys Rev Lett 105(25):253901

    Article  CAS  PubMed  Google Scholar 

  10. Gu Y, Gbu G (2010) Scintillation of Airy beam arrays in atmospheric turbulence. Opt Lett 35:3456–3458

    Article  PubMed  Google Scholar 

  11. Minovich A, Klein A, Janunts N, Pertsch T, Neshev D, Kivshar Y (2011) Generation and near-field imaging of Airy surface plasmons. Phys Rev Lett 107(11):116802

    Article  CAS  PubMed  Google Scholar 

  12. William LB, Alain D, Ebbesen TW (2003) Surface plasmon suwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  13. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Sci Appl 4(6):e294

    Article  CAS  Google Scholar 

  14. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  15. Li L, Li T, Wang M, Zhang C, Zhu SN (2011) Generation and near-field imaging of Airy surface plasmons. Phys Rev Lett 107(11):126804

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Wang X, Zhang Y (2017) Simultaneous Airy beam generation for both surface plasmon polaritons and transmitted wave based on metasurface. Opt Express 25(20):23589–23596

    Article  CAS  PubMed  Google Scholar 

  17. Tang XM, Li L, Li T, Wang QJ, Zhang XJ, Zhu SN, Zhu YY (2013) Converting surface plasmon to spatial Airy beam by graded grating on metal surface. Opt Lett 38:1733–1735

    Article  CAS  PubMed  Google Scholar 

  18. Chen YH, Fu JX, Li ZY (2011) Surface wave holography on designing subwavelength metallic structures. Opt Express 19(24):23908–23920

    Article  CAS  PubMed  Google Scholar 

  19. Yin X, Chen L, Li X (2018) Polarization-controlled generation of Airy plasmons. Opt Express 26:23251–23264

    Article  CAS  PubMed  Google Scholar 

  20. Chen YG, Li ZY (2016) Three-dimensional manipulations of surface plasmon polariton wave propagation. Plasmonics 11(5):1385–1391

    Article  Google Scholar 

  21. Yin J, Chen YG (2017) Control surface plasmon polaritons propagation efficiently with only one holographic line. Opt Commun 389:63–67

    Article  CAS  Google Scholar 

  22. Chen YG, Chen L (2018) Metal-dielectric composite holography for controlling the propagations of surface plasmon polaritons. Plasmonics 13(7):2221–2228

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported the National Natural Science Foundation of China at No. 11764006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Gang Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, JX., Chen, YG. Generating Surface Plasmon Polariton Airy Beam with Dielectric Relief Holographical Structures . Plasmonics 15, 1683–1688 (2020). https://doi.org/10.1007/s11468-020-01182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01182-y

Keywords

Navigation