Skip to main content
Log in

Structural, Morphological and Photoluminescence Studies of Pure ZrO2 and ZrO2: Eu+3 Nanophosphors Synthesised by Microwave-Assisted Hydrothermal Technique

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The luminescence properties of pure and ZrO2: Eu+3 nanophosphors with different concentration of the Eu+3 is synthesised and studied. A novel and environment benign microwave-induced hydrothermal process is used to synthesise the nanoparticles. As-formed pure ZrO2 nanoparticles were X-ray amorphous, and upon calcination at higher temperatures, they crystallise to a combination of both cubic and tetragonal phases. However, the ZrO2: Eu+3 nanophosphors prepared through the same technique under similar conditions yield exclusively cubic ZrO2, and it entirely depends on the concentration of Eu+3 as revealed by XRD studies. The nanoparticles are found to be spherical, non-porous and agglomerated as observed by SEM. The surface area of the nanoparticles of pure ZrO2 is found to be 30 m2/g for as-formed samples and 130 m2/g for calcined samples by BET studies. The increase in the surface area for calcined sample is due to the escaping of the adsorbed hydroxyl groups from the surface of the nanoparticles. The photoluminescence properties of the pure and Eu+3-doped ZrO2 nanoparticles were measured under 251 nm excitation wavelength. Under this excitation, pure ZrO2 gives the emissions at 394 nm, whereas Eu+3-doped nanoparticles gives the emissions at 613 nm, which corresponds to inter-f-f transition from 5D07F2 (613 nm) and is arising due to electronic dipole in the Eu+3 activator ion. CIE colour space (x, y) coordinates corresponding to 613 nm in the CIE chromaticity diagram is 0.680, 0.319.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Leroy CM, Cardinal T, Jubera V, Aymoniera C, Treguer-Delapierre M, Boissiere C, Grosso D, Sanchez C, Viana B, Pelle F (2013) Microporous Mesoporous Materials 170:123

    Article  CAS  Google Scholar 

  2. Ehrhart G, Capoen B, Robbe O, Beclin F, Boy P, Turrell S, Bouazaoui M (2008) Energy transfer between semiconductor nanoparticles (ZnS or CdS) and Eu3+ ions in sol–gel derived ZrO2 thin films. Opt Mater 30:1595–1602

    Article  CAS  Google Scholar 

  3. Rebuttini V, Pucci A, Arosio P, Bai X, Locatelli E, Pinna N, Lascialfari A, Franchini MC (2013) J Mater Chem B 1:919

    Article  CAS  Google Scholar 

  4. Manna S, Ghoshal T, Debb AK, De SK (2010) J Appl Crystallogr 43:780

    Article  CAS  Google Scholar 

  5. Liaparinos PF, Kandarakis IS (2009) Med Phys 36:1985

    Article  CAS  Google Scholar 

  6. Manjunatha S, Hari Krishna R, Thomas T, Panigrahi BS, Dharmaprakash MS (2018) Mater Res Bull 98:139

    Article  CAS  Google Scholar 

  7. Merikhi J, Feldmann C (2000) Eur J Mat Sci 35:3959

    Article  CAS  Google Scholar 

  8. Liu X, Zhou F, Gu M, Huang S, Liu B, Chen N (2008) Fabrication of highly a-axis-oriented Gd2O3:Eu3+ thick film and its luminescence properties. Opt Mater 31:126–130

    Article  CAS  Google Scholar 

  9. Fu-Wen L, Chia-Hao H, Fu-Shan C, Chung-Hsin L (2012) Ceram Int 38:1577

    Article  CAS  Google Scholar 

  10. Julian B, Corberan R, Cordoncillo E, Escribano P, Viana B, Sanchez C (2005) One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2and ZrO2. Nanotechnology 16:2707–2713

    Article  CAS  Google Scholar 

  11. Song J, Du Y, Xu L, Wei H, He D, Jiao H (2014) Synthesis of Red-Emitting AgGd0.9Eu0.1(MoO4)2Phosphors by Precipitation at Room Temperature. J Am Ceram Soc 97:1442–1449

    Article  CAS  Google Scholar 

  12. Soares MRN, Nico C, Oliveira D, Peres M, Rino L, Fernandes AJS, Monteiro T, Costa FM (2012) Mater Sci Eng B 177:712

    Article  CAS  Google Scholar 

  13. López-Luke T, De la Rosa E, Romero VH, Ángles-Chávez C, Salas P (2011) Solvent and surfactant effect on the self-assembly and luminescence properties of ZrO2:Eu3+ nanoparticles. Appl Phys B Lasers Opt 102:641–649

    Article  CAS  Google Scholar 

  14. Vimal G, Kamal P, Biju PR, Joseph C (2015) Appl Nanosci 5:837

    Article  CAS  Google Scholar 

  15. Liu Z, Chen Q, Dai N, Yu Y, Yang L, Li JJ (2012) Tunable white light emitting glass suitable for long-wavelength ultraviolet excitation. Non-Cryst Solids 358:3289–3293

    Article  CAS  Google Scholar 

  16. Bedekar V, Dutta DP, Mohapatra M, Godbole SV, Ghildiyal R, Tyagi AK (2001) Nanotechnology 20:125707

    Article  CAS  Google Scholar 

  17. Kar A, Patra A (2012) Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 4:3608–3619

    Article  CAS  Google Scholar 

  18. Wang G, Peng Q, Li Y (2011) Acc Chem Res 44:322

    Article  CAS  Google Scholar 

  19. Ksapabutr B, Poungchun G, Panapoy M (2010) Phys Sci 2010:014055

    Article  CAS  Google Scholar 

  20. Liu G, Hong G, Sun D (2004) Synthesis and characterization of SiO2/Gd2O3:Eu core–shell luminescent materials. J Colloid Interface Sci 278:133–138

    Article  CAS  Google Scholar 

  21. Qu X, Song H, Pan G, Bai X, Dong B, Zhao H, Dai Q, Zhang H, Qin R, Lu S (2009) Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments. J Phys Chem C 113:5906–5911

    Article  CAS  Google Scholar 

  22. Manjunatha S, Dharmaprakash MS (2016) J Lumin 180:20

    Article  CAS  Google Scholar 

  23. Balog M, Schieber M (2010) Thin Solid Films 47:109

    Article  Google Scholar 

  24. Kumari L, Li WZ, Xu JM, Leblanc RM, Wang DZ, Li Y, Guo H, Zhang (2009) J Cryst Growth Des 9:3874–3880

    Article  CAS  Google Scholar 

  25. Singh S, Krupanidhi SB (2009) Fabrication and phase transformation in crystalline nanoparticles of PbZrO3 derived by Sol-Gel. Curr Nanosci 5:489–492

    Article  CAS  Google Scholar 

  26. Manjunatha S, Dharmaprakash MS (2016) Mater Lett 164:476

    Article  CAS  Google Scholar 

  27. Putkonen M, Niinisto L (2001) J Mater Chem 11:3141–3147

    Article  CAS  Google Scholar 

  28. Morstien M, Pozsgai I, Spencer ND (1999) Composition and microstructure of zirconia films obtained by MOCVD with a new, liquid, mixed acetylacetonato-alcoholato precursor. Chem Vap Depos 5:151–158

    Article  Google Scholar 

  29. Hobbs H, Briddon S, Lester E (2009) Green Chem 4:484

    Article  CAS  Google Scholar 

  30. Dwivedi R, Maury A, Verma A, Prasad R, Bartw KS (2011) Microwave assisted sol–gel synthesis of tetragonal zirconia nanoparticles. J Alloys Compd 509:6848–6851

    Article  CAS  Google Scholar 

  31. Bagus Suryamas A, Miftahul Munir M, Ogi T, Hogan CJ, Okuyama K (2010) Photoluminescent ZrO2:Eu3+ nanofibers prepared via electrospinning. Jpn J Appl Phys 49:115003

    Article  CAS  Google Scholar 

  32. Vidya YS, Anantharaju KS, Nagabhushana H, Sharma Nagaswarup SC, Prashantha HP, Shivakumara C, Danithkumar (2015) Spectrochim Acta A Mol Biomol Spectrosc 135:241

    Article  CAS  Google Scholar 

  33. Raunak Kumar T, Durga Prasad B, Upadhyay K (2015) J Radiat Res Appl Sci 8:11

    Article  CAS  Google Scholar 

  34. Dhiren Meeteia S, Singha D, Sudarsan V (2012) Polyol synthesis and characterizations of cubic ZrO2:Eu3+ nanocrystals. J Alloys Compd 514:174–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N Nanda would like to thank the chairperson and management of BMS College for Women, Bengaluru for the support to carry out this research work. M S Dharmaprakash and S Manjunatha would like to thank the TEQIP Phase-III, BOG, BMS College of Engineering, Bengaluru.

Funding

M S Dharmaprakash would like to thank VGST, GOK for grants K-FIST (L2)/2017/269/541. N Nanda is thankful to the University Grants Commission, Government of India for financial support under minor research project (UGC-MRP Nos. 1362-MRP/14-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nanda Nagappa or Dharmaprakash Mallenahally Siddalingappa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Environmental benevolent method for the preparation of pure and RE doped ZrO2 nanophosphors.

• Quick and energy-saving method for the synthesis of nanoparticles metal oxides.

• A single-step method for obtaining crystalline and amorphous materials.

• The obtained nanoparticles exhibit red emission under VU irradiation and can be used in optical displays.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivanna, M., Nagappa, N. & Siddalingappa, D.M. Structural, Morphological and Photoluminescence Studies of Pure ZrO2 and ZrO2: Eu+3 Nanophosphors Synthesised by Microwave-Assisted Hydrothermal Technique. Plasmonics 15, 1629–1637 (2020). https://doi.org/10.1007/s11468-020-01174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01174-y

Keywords

Navigation