Skip to main content
Log in

Direct Coupling Strategy in Plasmonic Nanocircuits for Low Loss and Easy Fabrication

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic nanocircuits can deliver light in subwavelength scale, however, require state-of-the-art fabrication process due to the ultra-small footprints. Here, we introduce direct coupling strategy based on metal-insulator-metal (MIM) waveguide systems to reduce the system loss as well as the fabrication difficulty and increase the structural stability. Following this strategy, the coupling between the input waveguide and square ring resonator (SRR) can be realized via an aperture, and for the coupling between SRRs, the metal gap can be removed. The numerical results show that such direct coupling can produce similar effects with conventional indirect coupling in MIM waveguide systems, and the physics mechanism behind as well as influences of geometric parameters on transmission spectrum is also investigated. This work provides a simpler approach to realize on-chip plasmonic nanodevices, such as filters, sensors, and optical delay lines, in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    PubMed  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83

    Google Scholar 

  3. Meinzer N, Barnes WL, Hooper IR (2014) Plasmonic meta-atoms and metasurfaces. Nat Photonics 8(12):889

    Google Scholar 

  4. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4(6):e294

    Google Scholar 

  5. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521

    PubMed  Google Scholar 

  6. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    PubMed  Google Scholar 

  7. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32(5):490–495

    PubMed  PubMed Central  Google Scholar 

  8. Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler PC, Li J et al (2014) High-speed plasmonic phase modulators. Nat Photonics 8(3):229

    Google Scholar 

  9. Hössbacher C, Josten A, Baeuerle B, Fedoryshyn Y, Hettrich H, Salamin Y et al (2017) Plasmonic modulator with > 170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt Express 25(3):1762–1768

    Google Scholar 

  10. Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M et al (2017) High-speed plasmonic modulator in a single metal layer. Science 358(6363):630–632

    PubMed  Google Scholar 

  11. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L et al (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629

    PubMed  Google Scholar 

  12. Gather MC (2012) A rocky road to plasmonic lasers. Nat Photonics 6(11):708

    Google Scholar 

  13. Sidiropoulos TP, Röder R, Geburt S, Hess O, Maier SA, Ronning C, Oulton RF (2014) Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat Phys 10(11):870

    Google Scholar 

  14. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511

    PubMed  Google Scholar 

  15. Lu H, Wang G, Liu X (2013) Manipulation of light in MIM plasmonic waveguide systems. Chin Sci Bull 58(30):3607–3616

    Google Scholar 

  16. Yang X, Hu X, Chai Z, Lu C, Yang H, Gong Q (2014) Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies. Appl Phys Lett 104(22):221114

    Google Scholar 

  17. Naghizadeh S, Afridi A, Arısev O, Karaşahin A, Kocabaş ŞE (2017) Experimental investigation of stub resonators built in plasmonic slot waveguides. IEEE Photon Technol Lett 29(8):663–666

    Google Scholar 

  18. Zhu Y, Hu X, Yang H, Gong Q (2014) On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci Rep 4:3752

    PubMed  PubMed Central  Google Scholar 

  19. Yang X, Hu X, Yang H, Gong Q (2017) Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics 6(1):365

    Google Scholar 

  20. Kriesch A, Burgos SP, Ploss D, Pfeifer H, Atwater HA, Peschel U (2013) Functional plasmonic nanocircuits with low insertion and propagation losses. Nano Lett 13(9):4539–4545

    PubMed  Google Scholar 

  21. Lu H, Liu X, Gong Y, Mao D, Wang L (2011) Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Opt Express 19(14):12885–12890

    PubMed  Google Scholar 

  22. Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500–1502

    PubMed  Google Scholar 

  23. Fu H, Li S, Wang Y, Song G, Zhang P, Wang L, Yu L (2018) Independently tunable ultrasharp double fano resonances in coupled plasmonic resonator system. IEEE Photonics J 10(1):1–9

    Google Scholar 

  24. Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J et al (2018) All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency. Opt Commun 425:196–203

    Google Scholar 

  25. Nozhat N, Granpayeh N (2015) All-optical logic gates based on nonlinear plasmonic ring resonators. Appl Opt 54(26):7944–7948

    PubMed  Google Scholar 

  26. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All-optical control of light on a silicon chip. Nature 431(7012):1081–1084

    PubMed  Google Scholar 

  27. Veronis G, Fan S (2007) Modes of subwavelength plasmonic slot waveguides. J Lightwave Technol 25(9):2511–2521

    Google Scholar 

  28. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Google Scholar 

  29. Dionne J, Sweatlock L, Atwater H, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73(3)

  30. Gordon R, Brolo AG (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13(6):1933–1938

    PubMed  Google Scholar 

  31. Veronis G, Yu Z, Kocabas SE, Miller DA, Brongersma ML, Fan S (2009) Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chin Opt Lett 7(4):302–308

    Google Scholar 

  32. Naghizadeh S, Kocabaş ŞE (2017) Guidelines for designing 2D and 3D plasmonic stub resonators. JOSA B 34(1):207–217

    Google Scholar 

  33. Bahramipanah M, Abrishamian MS, Mirtaheri SA, Liu JM (2014) Ultracompact plasmonic loop–stub notch filter and sensor. Sensors Actuators B Chem 194:311–318

    Google Scholar 

  34. He Z, Li H, Li B, Chen Z, Xu H, Zheng M (2016) Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub. Opt Lett 41(22):5206–5209

    PubMed  Google Scholar 

  35. Haus HA (1984) Waves and fields in optoelectronics (1984). Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (61671455, 61805278), the Foundation of NUDT (ZK17-03-01), the Program for New Century Excellent Talents in University (NCET-12-0142), and the China Postdoctoral Science Foundation (2018 M633704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojian Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, J., Han, Y. et al. Direct Coupling Strategy in Plasmonic Nanocircuits for Low Loss and Easy Fabrication. Plasmonics 15, 761–767 (2020). https://doi.org/10.1007/s11468-019-01093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01093-7

Keywords

Navigation