Skip to main content
Log in

Plasmon-Phonon-Polaritons in Encapsulated Phosphorene

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We consider a system consists of a doped monolayer phosphorene embedded between two hexagonal boron nitride (hBN) slabs along the heterostructure direction. The wavevector azimuthal angle dependence of the plasmon-polariton and plasmon-phonon-polariton modes of the hybrid system are calculated based on the random-phase approximation at finite temperature. The collective modes illustrate strong anisotropy and strong coupling with phonon modes of the polar media, and furthermore, the Landau damping occurs due to the intraband processes when plasmon enters intraband electron-hole continuum. Our numerical results show that the plasmon mode is highly confined to the surface along the zigzag direction. Owing to the strong electron-phonon interaction, the phonon dispersions in the Reststrahlen bands are also angle-dependent. These results are also in agreement with those of the semiclassical model obtained in our calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bridgmann PW (1914) Two new modifications of phosphorus. J Am Chem Soc 36(7):1344–1363

    Article  Google Scholar 

  2. Keyes RW (1953) The electrical properties of black phosphorus. Phys Rev 92:580–584

    Article  CAS  Google Scholar 

  3. Asahina H, Morita A (1984) Band structure and optical properties of black phosphorus. J Phys C: Solid State Phys 17(11):1839–1852

    Article  CAS  Google Scholar 

  4. Sugai S, Shirotani I (1985) Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun 53(9):753–755

    Article  CAS  Google Scholar 

  5. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole Mobility. ACS Nano 8(4):4033–4041

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nature Nanotechnol 9:372–377

    Article  CAS  Google Scholar 

  7. Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89:235319

    Article  CAS  Google Scholar 

  8. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907

    Article  CAS  Google Scholar 

  9. Qiao J, Kong X, Hu ZX, Yang F, Ji W (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Commun 5:4475

    Article  CAS  Google Scholar 

  10. Garcia de Abajo JF (2014) Graphene plasmonics: challenges and opportunities. ACS Photonics 1(3):135–152

    Article  CAS  Google Scholar 

  11. Jablan M, Soljačić M, Buljan H (2013) Plasmons in graphene: fundamental properties and potential applications. Proc IEEE 101(7):1689–1704

    Article  CAS  Google Scholar 

  12. Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics. World Scientific Publishing, Singapore

    Book  Google Scholar 

  13. Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nature Phys 9:329–340

    Article  CAS  Google Scholar 

  14. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77–81

    Article  CAS  PubMed  Google Scholar 

  16. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7:948–957

    Article  CAS  Google Scholar 

  17. Caldwell JD, Kretinin AV, Chen Y, Giannini V, Fogler MM, Francescato Y, Ellis CT, Tischler JG, Woods CR, Giles AJ, Hong M, Watanabe K, Taniguchi T, Maier SA, Novoselov KS (2014) Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun 5:5221

    Article  CAS  Google Scholar 

  18. Mahan GD (2000) Many-particle physics, 3rd edn. Springer, New York

    Book  Google Scholar 

  19. Mooradian A, Wright GB (1966) Observation of the interaction of plasmons with longitudinal optical phonons in GaAs. Phys Rev Let 16:999

    Article  CAS  Google Scholar 

  20. Liu Y, Willis RF (2010) Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys Rev B 81:081406(R)

    Article  CAS  Google Scholar 

  21. Koch RJ, Seyller T, Schaefer JA (2010) Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem. Phys Rev B 82:201413(R)

    Article  CAS  Google Scholar 

  22. Luxmoore IJ, Gan CH, Liu PQ, Valmorra F, Li P, Faist J, Nash GR (2014) Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide. ACS Photonics 1 (11):1151–1155

    Article  CAS  Google Scholar 

  23. Dai S, Ma Q, Liu M, Andersen T, Fei Z, Goldflam MD, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen GCAM, Zhu S -E, Jarillo-Herrero P, Fogler MM, Basov DN (2015) Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotechnol 10:682–686

    Article  CAS  Google Scholar 

  24. Tomadin A, Principi A, Song JCW, Levitov LS, Polini M (2015) Accessing phonon polaritons in hyperbolic crystals by angle-resolved photoemission spectroscopy. Phys Rev Lett 115: 087401

    Article  PubMed  CAS  Google Scholar 

  25. Dai S, Fei Z, Ma Q, Rodin AS, Wagner M, McLeod AS, Liu M, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto AH, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2014) Tunable phonon polaritons in atomically thin Van der Waals crystals of boron nitride. Science 343(6175):1125–1129

    Article  CAS  PubMed  Google Scholar 

  26. Brar VW, Jang MS, Sherrott M, Kim S, Lopez JJ, Kim LB, Choi M, Atwater H (2014) Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett 14(7):3876–388

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Y, Qi H, Wang Y, Qi DX, Hu Q (2018) Curving h-BN thin films can create extra phonon polariton modes. Opt Lett 43(7):1459–1462

    Article  CAS  PubMed  Google Scholar 

  28. Zhao ZW, Wu HW, Zhou Y (2016) Surface-confined edge phonon polaritons in hexagonal boron nitride thin films and nanoribbons. Opt Exp 24(20):22930–22942

    Article  CAS  Google Scholar 

  29. Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2015) Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat Mater 14:421–425

    Article  CAS  PubMed  Google Scholar 

  30. Xu XG, Jiang JH, Gilburd L, Rensing RG, Burch KS, Zhi C, Bando Y, Golberg D, Walker GC (2014) Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene. ACS Nano 8(11):11305–1

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, ow T, Fung KH, Avouris P, Fang NX (2015) Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett 15:3172

    Article  CAS  PubMed  Google Scholar 

  32. Xu XG, Ghamsari BG, Jiang JH, Gilburd L, Andreev GO, Zhi C, Bando Y, Golberg D, Berini P, Walker GC (2014) One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat Commun 5:478

    Google Scholar 

  33. Dai S, Ma Q, Andersen T, Mcleod AS, Fei Z, Liu MK, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2015) Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Commun 6:6963

    Article  CAS  Google Scholar 

  34. Li P, Lewin M, Kretinin AV, Caldwell JD, Novoselov KS, Taniguchi T, Watanabe K, Gaussmann F, Taubner T (2015) Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nature Commun 6:7507

    Article  CAS  Google Scholar 

  35. Elahi M, Khaliji K, Tabatabaei SM, Pourfath M, Asgari R (2015) Modulation of electronic and mechanical properties of phosphorene through strain. Phys Rev B 91:115412

    Article  CAS  Google Scholar 

  36. Zare M, Rameshti BZ, Ghamsari FG, Asgari R (2017) Thermoelectric transport in monolayer phosphorene. Phys Rev B 95:045422

    Article  Google Scholar 

  37. Ezawa M (2014) Topological origin of quasi-flat edge band in phosphorene. New J Phys 115004:16

    Google Scholar 

  38. Rudenko AN, Katsnelson MI (2014) Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys Rev B 89:201408(R)

    Article  CAS  Google Scholar 

  39. Rodin AS, Carvalho A, Castro Neto AH (2014) Strain-induced gap modification in black phosphorus. Phys Rev Lett 112:176801

    Article  CAS  PubMed  Google Scholar 

  40. Low T, Roldán R, Wang H, Xia F, Avouris P, Moreno LM, Guinea F (2014) Plasmons and screening in monolayer and multilayer black phosphorus. Phys Rev Lett 113:106802

    Article  CAS  PubMed  Google Scholar 

  41. Lundeberg MB, Gao Y, Asgari R, Tan C, Duppen BV, Autore M, Alonso-Gonzalez P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens FHL (2017) Tuning quantum nonlocal effects in graphene plasmonics. Science 357(6347):187–191

    Article  CAS  PubMed  Google Scholar 

  42. Giuliani GF, Vignale G (2005) Quantum theory of the electron liquid. Cambridge University Press, Cambridge

    Book  Google Scholar 

  43. Ashcroft NW, Mermin ND (1976) Solid state physics. Harcourt College Publishers, Orlando

    Google Scholar 

  44. Torbatian Z, Asgari R (2018) Optical absorption properties of few-layer phosphorene. Phys Rev B 98:205407. Note that in Fig. 4 we use the masses obtained by DFT results, mainly the energy gap is 0.98 eV and the masses are mcx = 0.17, mcy = 1.12, mvx = 0.15, and mvy = 6.35 in units of the electron bare mass

    Article  CAS  Google Scholar 

  45. Our numerical results show that the plasmon mode can be fitted with \(\sqrt {2{\pi } n e^{2} q/m_{c x}}\) very well along the armchair and with \(\sqrt {2{\pi } n e^{2} q/m_{c y}}\) quite good along the zigzag direction at the long-wavelength limit

  46. Torbatian Z, Asgari R (2018) Plasmonic physics of 2D crystalline materials. Appl Sci 8(2):238

    Article  CAS  Google Scholar 

  47. Badioli M, Woessner A, Tielrooij KJ, Nanot S, Navickaite G, Stauber T, Garcia de Abajo FJ, Koppens FHL (2014) Phonon-mediated mid-infrared photoresponse of graphene. Nano Lett 14(11):6374–6381

    Article  CAS  PubMed  Google Scholar 

  48. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Polini for very useful discussions. This work is partially supported by Iran Science Elites Federation. R. A acknowledges Scuola Normale Superiore, Pisa for its hospitality during the period in which the final stage of this work is completed.

Funding

This work is partially supported by Iran Science Elites Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnood Ghohroodi Ghamsari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghohroodi Ghamsari, F., Asgari, R. Plasmon-Phonon-Polaritons in Encapsulated Phosphorene. Plasmonics 15, 1289–1304 (2020). https://doi.org/10.1007/s11468-019-01059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01059-9

Keywords

Navigation