Skip to main content
Log in

Transition Metal Dichalcogenides/Gold-Based Surface Plasmon Resonance Sensors: Exploring the Geometrical and Material Parameters

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, we explored the geometrical and material parameters of surface plasmon resonance (SPR) sensors, in order to gain insight about the mechanisms that control the sensors’ response when different 2D materials monolayers (MoS2, MoSe2, WS2, WSe2) are used to modify the surface. Accordingly, the surface plasmons’ (SPs) dispersion relations, the reflectivity maps and both reflectivity and phase responses for the visible and near-infrared wavelengths range (400–1400 nm), were systematically investigated by using COMSOL Multiphysics (RF Module) and transfer matrix method (TMM) algorithm considering a modified Kretschmann configuration. We showed that the sensitivity of the modified structures is enhanced for wavelengths between 600 and 1000 nm both in reflectivity and phase. By evaluating also the influence of the number of 2D material monolayers, the highest sensitivity in reflectivity was obtained at 700 nm when five monolayers of MoS2 were added, reaching 220 deg/RIU for a change in dielectric’s refractive index of 0.002 RIU, which is 45% higher than that of the standard bare structure. Regarding the phase response, it was shown that by adding only one monolayer of MoS2, a sensitivity of 9 × 105 deg/RIU is achieved for a refractive index change of 10−6 RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cada M, Blazek D, Pistora J, Postava K, Siroky P (2015) Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide. Opt Mater Express 5:2

    Article  CAS  Google Scholar 

  2. Xiangjun L, Jian S, John XJZ (2015) Integrated terahertz surface plasmon resonance on polyvinylidene fluoride layer for the profiling of fluid reflectance spectra. Plasmonics 11(4):1093–1100

    Google Scholar 

  3. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:2

    Article  Google Scholar 

  4. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 23:2135–2136

    Article  CAS  Google Scholar 

  5. Heinz R (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin Heidelberg

  6. Wei L, Rujing W, Hairong L, Jieting K, Xinhua Z, He H, Xiaobo H, Wei H (2019) Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors. Opt Express 27(2):2019

    Google Scholar 

  7. Chlebus R, Chylek J, Ciprian D, Hlubina P (2018) Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors 18:3693

    Article  CAS  Google Scholar 

  8. Breveglieri G, Gallo TE, Travan A, Pellegatti P, Guerra G, Gambari R, Borgatti M (2016) Surface plasmon resonance analysis to detect the β+ IVSI-110 thalassemia mutation in circulating cell-free fetal DNA. Clin Chim Acta 462:133–134

    Article  CAS  PubMed  Google Scholar 

  9. Breveglieri G, Bassi E, Carlassara S, Cosenza LC, Pellegatti P, Guerra G, Finotti A, Gambari R, Borgatti M (2016) Y-chromosome identification in circulating cell-free fetal DNA using surface plasmon resonance. Prenat Diagn 36:353–361

    Article  CAS  PubMed  Google Scholar 

  10. Majka J, Speck C (2007) Analysis of protein-DNA interactions using surface plasmon resonance. Adv Biochem Engin/Biotechnol 104:13–36

    CAS  Google Scholar 

  11. Rajan J, Anuj KS (2010) Design of a silicon-based plasmonic biosensor chip for human blood-group identification. Sensors Actuators B Chem 145:200–204

    Article  CAS  Google Scholar 

  12. Jijo L, Vignesh S, Mamatha B, Santhosh C, Rajeev KS (2018) Real-time and rapid detection of Salmonella typhimurium using an inexpensive lab-built surface plasmon resonance setup. Laser Phys Lett 15:075701

    Article  Google Scholar 

  13. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wirtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    Article  CAS  PubMed  Google Scholar 

  14. Rob PHK (2008) Physics of surface plasmon resonance. In: Richard BMS, Anna JT (eds) Handbook of surface plasmon resonance. The Royal Society of Chemistry, UK, pp 15–34

  15. Stepan AZ, Anton VS, Elena RS, Vladimir MM, Shirshov YM (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2:62–70

    Google Scholar 

  16. Sarah F, Naseer S, Zul AZJ, Prabakaran P (2017) Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Int J Nanoelectr Mater 10:149–158

    Google Scholar 

  17. Lahav A, Atef S, Ibrahim A (2009) Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J Nanophotonics 3(1):031501

    Article  CAS  Google Scholar 

  18. Yufeng Y, Xiantong Y, Qinlinq O, Yonghong S, Jun S, Junle Q, Ken-Tye Y (2018) Highly anisotropic black phosphorus-graphene hybrid architecture for ultrasensitive plasmonic biosensing: theoretical insight. 2D Materials 5:025015

    Article  CAS  Google Scholar 

  19. Sherif HEG, Munsik C, Young LK, Kyung MB (2016) Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection. Sensors 16:1442

    Article  CAS  Google Scholar 

  20. Molitor F, Guttinger J, Stampfer C, Droscher S, Jacobsen A, Ihn T, Ensslin K (2011) Electronic properties of graphene nanostructures. J Phys Condens Matter 23(24):243201

    Article  CAS  PubMed  Google Scholar 

  21. Li D, Wensi Z, Xiaoqing Y, Zhenping W, Zhiqiang S, Gang W (2016) When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale 8(47):19491–19509

    Article  CAS  PubMed  Google Scholar 

  22. Leiming W, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  Google Scholar 

  23. Leiming W, Jun G, Xiaoyu D, Xiang XJ, Dianyuan F (2017) Sensitivity enhanced by MoS2-graphene hybrid structure in guided-wave surface plasmon resonance biosensor. Plasmonics 13:281–285

    Google Scholar 

  24. Jinguang T, Li J, Huifang C, Yiqin W, Ken-Tye Y, Erik F, Sailing H (2018) Graphene-bimetal plasmonic platform for ultra-sensitive biosensing. Opt Commun 410:817–823

    Article  CAS  Google Scholar 

  25. Szunerits S, Maalouli N, Wijaya E, Vilcot JP, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405(5):1435–1443

    Article  CAS  PubMed  Google Scholar 

  26. Chang Lu YL, Yibin Y, Juewen L (2017) Comparison of MoS2, WS2 and graphene oxide for DNA adsorption and sensing. Langmuir 33(2):630–637

    Article  CAS  PubMed  Google Scholar 

  27. Saifur R, Rabiul H, Ritka KA, Shamim A (2018) A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt Mater 75:567–573

    Article  CAS  Google Scholar 

  28. Minghong W, Yanyan H, Shouzhen J, Chao Z, Cheng Y, Tingyin N, Xioyun L, Chonghui L, Wenyuan Z, Baoyuan M (2017) Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetalic film. RSC Adv 7:47177–47182. https://doi.org/10.1039/C7RA08380G

  29. Qinling O, Shuwen Z, Li J, Liying H, Gaixia X, Xuan-Quyen D, Jun Q, Sailing H, Junle Q, Philippe C, Ken-Tye Y (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructured surface plasmon resonance biosensor. Sci Rep 6:28190

    Article  CAS  Google Scholar 

  30. Saifur R, Shamim A, Rabiul H, Biplob H, Ismail H (2017) Design and numerical analysis of highly sensitive Au-MoS2–graphene based hybrid surface plasmon resonance biosensor. Opt Commun 396(1):36–43

    Google Scholar 

  31. Qingling O, Shuwen Z, Xuan-Quyen D, Philippe C, Ken-Tye Y (2016) Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Engineering 140:134–139. https://doi.org/10.1016/j.proeng.2015.08.1114

  32. Saifur R, Shaikh SN, Shamim A, Lway FA, Maksudur R, Ritka KA (2019) Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide. Photonics Nanostruct Fundam Appl 33:29–35

    Article  Google Scholar 

  33. Sexton BA, Feltis BN, Davis TJ (2008) Characterisation of gold surface plasmon resonance sensor substrates. Sensors Actuators A 141:471–475

    Article  CAS  Google Scholar 

  34. Hyuk RG, Seong HL (2010) Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater Trans 51(6):1150–1155

    Article  CAS  Google Scholar 

  35. Hsiang-Lin L, Chih-Chiang S, Shen-Han S, Chang-Lung H, Ming-Yang L, Jong L (2014) Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl Phys Lett 105:20

    Google Scholar 

  36. Pradeep KM, Rajan J (2012) Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors Actuators B Chem 169:161–166

    Article  CAS  Google Scholar 

  37. William LB (2006) Surface plasmon-polariton length scales: a route to sub wavelength optics. J Opt A Pure Appl Opt 8:S87–S93

    Article  Google Scholar 

  38. Stefan Alexander M (2007) Plasmonics: fundamentals and applications. Springer US, New York

  39. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405

    Article  CAS  Google Scholar 

  40. Hu WQ, Liang EJ, Ding P, Cai GW, Xue QZ (2009) Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial. Opt Express 17:21843–21849

    Article  CAS  PubMed  Google Scholar 

  41. Hai-Pang C, Jing-Lun L, Railing C, Sheng-Yu S, Pui Tak L (2005) High-resolution angular measurement using surface plasmon-resonance via phase interrogation at optimal incident wavelengths. Opt Lett 30:20

    Article  Google Scholar 

  42. Petr H, Dalibor C (2017) Spectral phase shift if surface plasmon resonance in the Kretschmann configuration: theory and experiment. Plasmonics 12(4):1071–1078

    Article  CAS  Google Scholar 

  43. Chie-Ming W, Zhi-Cheng J, Shen-Fen J, Liann-Be C (2003) High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors Actuators B 92:133–136

    Article  CAS  Google Scholar 

  44. Wei G, Shouzhen J, Zhen L, Chonghui L, Jihua X, Jie P, Yanyan H, Baoyuan M, Aihua L, Chao Z (2019) Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. Opt Express 27(3):3483–3495

    Article  Google Scholar 

Download references

Acknowledgments

Pericle Varasteanu thanks Dr. Cristian Kusko of the IMT Bucharest for stimulating discussions.

Funding

This work was supported by a grant of Ministry of Research and Innovation, CNCS-UEFISCDI, projects’ number PN-III-P4-ID-PCE-2016-0618 and PN-III-P1-1.2-PCCDI-2017-0820, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pericle Varasteanu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varasteanu, P. Transition Metal Dichalcogenides/Gold-Based Surface Plasmon Resonance Sensors: Exploring the Geometrical and Material Parameters. Plasmonics 15, 243–253 (2020). https://doi.org/10.1007/s11468-019-01033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01033-5

Keywords

Navigation