Skip to main content
Log in

Sensitive Gap-Enhanced Raman Spectroscopy with a Perfect Radially Polarized Beam

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Gap mode surface-enhanced Raman spectroscopy (SERS) enables high enhancement of Raman signal. However, the polarization of excitation light shows great influence on the excitation of gap mode and hence on the Raman enhancement. Here, we propose a nanoparticle-on-film gap mode SERS accompanying with a new type of excitation source called as perfect radially polarized (PRP) beam. The PRP beam possesses a ring-shaped beam pattern that can be tuned to match the surface plasmon resonance angle under a tight focusing condition, hence improving greatly the excitation efficiency of surface plasmon polaritons, and eventually the sensitivity of gap mode SERS. Such kind of enhanced-Raman system with a PRP beam has a great potential on the applications such as single molecule Raman detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  2. Jeanmaire DL, Duyne RPV (1975) Resonance Raman spectroelectrochemistry: V. Intensity transients on the millisecond time scale following double potential step initiation of a diffusion controlled electrode reaction. J Electroanal Chem 66(3):235–247

    Article  CAS  Google Scholar 

  3. Brus L (2008) Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc Chem Res 41(12):1742–1749

    Article  CAS  Google Scholar 

  4. Ru ECL, Grand J, Sow I, Somerville WRC, Etchegoin PG, Treguer-Delapierre M, Charron G, Félidj N, Lévi G, Aubard J (2011) A scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy. Nano Lett 11(11):5013–5019

    Article  Google Scholar 

  5. Karabeber H, Huang R, Iacono P, Samii JM, Pitter K, Holland EC, Kircher MF (2014) Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 8(10):9755–9766

    Article  CAS  Google Scholar 

  6. Marcaida I, Maguregui M, Morillas H, García-Florentino C, Pintus V, Aguayo T, Campos-Vallette M, Madariaga JM (2017) Optimization of sample treatment for the identification of anthraquinone dyes by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 409(8):2221–2228

    Article  CAS  Google Scholar 

  7. Simoncelli S, Roller EM, Urban P, Schreiber R, Turberfield AJ, Liedl T, Lohmueller T (2016) Quantitative single molecule surface-enhanced Raman scattering by optothermal tuning of DNA origami-assembled plasmonic nanoantennas. ACS Nano 10(11):9809–9815

    Article  CAS  Google Scholar 

  8. Krasnoslobodtsev AV, Torres MP, Kaur S, Vlassiouk IV, Lipert RJ, Jain M, Batra SK, Lyubchenko YL (2015) Nano-immunoassay with improved performance for detection of cancer biomarkers. Nanomedicine: NBM 11(1):167–173

    Article  CAS  Google Scholar 

  9. Camden JP, Dieringer JA, Zhao J, Duyne RPV (2008) Controlled Plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41(12):1653–1661

    Article  CAS  Google Scholar 

  10. Aroca R (2006) Surface-Enhanced Vibrational Spectroscopy. Wiley,pp 17–22

  11. Ru ECL, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy. Elsevier, pp 655–663

  12. Mcnay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (Sers) and surface-enhanced resonance Raman scattering (Serrs): a review of applications. Appl Spectrosc 65(8):825–837

    Article  CAS  Google Scholar 

  13. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496

    Article  CAS  Google Scholar 

  14. Kumar GVP (2012) Plasmonic nano-architectures for surface enhanced Raman scattering: a review. J Nanophoton 6(1):064503

    Article  Google Scholar 

  15. Khan I, Cunningham D, Littleford RE, Graham D, Smith WE, Mccomb DW (2006) From micro to nano: analysis of surface-enhanced resonance Raman spectroscopy active sites via multiscale correlations. Anal Chem 78(1):224–230

    Article  CAS  Google Scholar 

  16. Zhang Z, Yu Q, Li H, Mustapha A, Lin M (2015) Standing gold nanorod arrays as reproducible Sers substrates for measurement of pesticides in apple juice and vegetables. J Food Sci 80(2):N450–N458

    Article  CAS  Google Scholar 

  17. Yi Z, Yi Y, Luo J, Li X, Xu X, Jiang X, Yi Y, Tang Y (2014) Arrays of Zno nanorods decorated with au nanoparticles as surface-enhanced Raman scattering substrates for rapid detection of trace melamine. Physica B 451(30):58–62

    Article  CAS  Google Scholar 

  18. Schierhorn M, Lee SJ, Boettcher SW, Stucky GD, Moskovits M (2006) Metal–silica hybrid nanostructures for surface-enhanced Raman spectroscopy. Adv Mater 18(21):2829–2832

    Article  CAS  Google Scholar 

  19. Zhu C (2016) Silver-nanorod bundles: a hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants (Adv. Mater. 24/2016). Adv Mater 28(24):4870

    Article  Google Scholar 

  20. Kühler P, Roller EM, Schreiber R, Liedl T, Lohmüller T, Feldmann J (2014) Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. Nano Lett 14(5):2914–2919

    Article  Google Scholar 

  21. Kleinman SL, Frontiera RR, Henry AI, Dieringer JA, Van Duyne RP (2012) Creating, characterizing, and controlling chemistry with Sers hot spots. Phys Chem Chem Phys 15(1):21–36

    Article  Google Scholar 

  22. Du CL, Du CJ, You YM, He CJ, Luo J, Shi DN (2012) Surface-enhanced Raman scattering from individual Au nanoparticles on Au films. Plasmonics 7(3):475–478

    Article  CAS  Google Scholar 

  23. Yamamoto N, Ohtani S, Abajo FJGD (2011) Gap and Mie plasmons in individual silver nanospheres near a silver surface. Nano Lett 11(1):91

    Article  CAS  Google Scholar 

  24. Huo SX, Liu Q, Cao SH, Cai WP, Meng LY, Xie KX, Zhai YY, Zong C, Yang ZL, Ren B (2015) Surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration. J Phys Chem Lett 6(11):2015–2019

    Article  CAS  Google Scholar 

  25. Shen J, Wang J, Zhang C, Min C, Fang H, Du L, Zhu S, Yuan XC (2013) Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode surface-enhanced Raman scattering. Appl Phys Lett 103(19):191119

    Article  Google Scholar 

  26. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961

    Article  CAS  Google Scholar 

  27. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    Article  CAS  Google Scholar 

  28. Ru ECL, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803

  29. Chen SY, Mock JJ, Hill RT, Chilkoti A, Smith DR, Lazarides AA (2010) Gold nanoparticles on polarizable surfaces as Raman scattering antennas. ACS Nano 4(11):6535

    Article  CAS  Google Scholar 

  30. Du L, Tang D, Yuan G, Wei S (2013) Emission pattern of surface-enhanced Raman scattering from single nanoparticle-film junction. Appl Phys Lett 102(8):140–149

    Google Scholar 

  31. Du L, Yuan G, Tang D, Yuan X (2011) Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy. Plasmonics 6(4):651–657

    Article  CAS  Google Scholar 

  32. Lin J, Yuan XC, Tao SH, Burge RE (2006) Variable-radius focused optical vortex with suppressed sidelobes. Opt Lett 31(11):1600–1602

    Article  CAS  Google Scholar 

  33. Ostrovsky AS, Rickenstorff-Parrao C, Arrizón V (2013) Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett 38(4):534–536

    Article  Google Scholar 

  34. Vaity P, Rusch L (2015) Perfect vortex beam: Fourier transformation of a Bessel beam. Opt Lett 40(4):597–600

    Article  Google Scholar 

  35. Zhang C, Min C, Du L, Yuan XC (2016) Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl Phys Lett 108(20):201601

    Article  Google Scholar 

  36. Richards B, Wolf E (1959) Electromagnetic diffraction in optical systems. Ii. Structure of the image field in an aplanatic system. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences 253(1274):358–379

    Article  Google Scholar 

  37. Novotny L, Hecht B, Keller O (2012) Principles of nano-optics. 2nd edn. Cambridge University Press, pp 70–75

  38. Min C, Zhe S, Shen J, Zhang Y, Hui F, Yuan G, Du L, Zhu S, Lei T, Yuan X (2012) Focused plasmonic trapping of metallic particles. Nat Commun 4(1):2891

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61427819, 61490712, 61622504, 11504244; National Key Basic Research Program of China (973) under grant No. 2015CB352004; Science and Technology Innovation Commission of Shenzhen under grant nos. KQTD2015071016560101, KQCS2015032416183980, KQCS201532416183981; the leading talents of Guangdong province program no. 00201505 and the Natural Science Foundation of Guangdong Province under No. 2016A030312010; A. Yang acknowledges the Innovation and Development Fund for postgraduates in Shenzhen university.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luping Du or Xiaocong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Du, L., Dou, X. et al. Sensitive Gap-Enhanced Raman Spectroscopy with a Perfect Radially Polarized Beam. Plasmonics 13, 991–996 (2018). https://doi.org/10.1007/s11468-017-0597-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0597-y

Keywords

Navigation