Skip to main content
Log in

Effect of Plasmonic Silver Nanoparticles’ Size on Photophysical Characteristics of 4-Aryloxymethyl Coumarins

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The effect of plasmonic silver nanoparticles’ size on photophysical characteristics of four biologically active 4-aryloxymethyl coumarins 4-p-tolyloxymethylbenzo[h] coumarin (4PTMBC), 1-(4-iodo phenoxymethyl)-benzo [f] coumarin (1IPMBC), 4-(4-iodo-phenoxymethyl)-benzo [h] coumarin (4IPMBC), and 4-(4-iodo-phenoxymethyl)- 6-methoxy coumarin (4IPMMC) has been studied using absorption and fluorescence spectroscopy. The size of silver nanoparticles has been estimated by field effect scanning electron microscope technique. The absorption maxima of silver nanoparticles are red shifted with increase in their size. The absorption spectral changes of investigated coumarins with the addition of silver nanoparticles of different sizes suggest their possible interaction with silver nanoparticles. Fluorescence quenching has been observed for all the coumarins with the addition of silver nanoparticles of different sizes. The Stern-Volmer (S-V) plots of fluorescence quenching are found to be linear. The magnitude of quenching rate parameter suggests the involvement of static quenching mechanism. Fluorescence data has been used to estimate binding constants and the number of binding sites. The contribution of diffusion and electron transfer processes in fluorescence quenching mechanism has also been discussed. The values of S-V constant and quenching rate parameter are found to decrease with increase in size of silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, 25th ed., Springer-Verlag Berlin Heidelberg, Berlin

  3. Feldheim DL, Foss CA Jr (2002) Metal nanoparticles: synthesis, characterization and application, Eds. Marcel Dekker, New York

    Google Scholar 

  4. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  5. Sosa IO, Noguez C, Barrera RGJ (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275

    Article  CAS  Google Scholar 

  6. Labouta HI, Schneider M (2013) Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomed Nanotechnol Biol Med 9:39–54

    Article  CAS  Google Scholar 

  7. Dastjerdi R, Montazer M, Shahsavan S (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surf A 345:202–210

    Article  CAS  Google Scholar 

  8. Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P (2014) Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 121:164–172

    Article  CAS  Google Scholar 

  9. Naja G, Bouvrette P, Champagne J, Brousseau R, John HTL (2010) Activation of nanoparticles by biosorption for E.coli detection in milk and apple juice. Appl Biochem Biotechnol 162:460–475

    Article  CAS  Google Scholar 

  10. Yang J, Wang H, Wang Z, Tan X, Song C, Zhang R, Li J, Cui Y (2009) Interaction between antitumor drug and silver nanoparticle: combined fluorescence and surface enhanced Raman scattering study. Chin Opt Lett 7:894–897

    Article  CAS  Google Scholar 

  11. Shrivastava S, Bera T, Singh KS, Singh G, Ramchandrarao P, Dash D (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3:1357–1364

    Article  CAS  Google Scholar 

  12. Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444–448

    Article  CAS  Google Scholar 

  13. Kulkarni MV, Pujar BJ, Patil VD (1983) Studies on coumarins II. Arch Pharm 316:15–21

    Article  CAS  Google Scholar 

  14. Vasudevan KT, Kulkarni MV, Pauutaraja (1994) 2-(o-Methoxyphenoxy)- 1-methylbenzimidazole, C H N O. Acta Crystallogr C 50:1286–1288

    Article  Google Scholar 

  15. Basanagouda M, Kulkarni MV, Sharma D, Gupta VK, Pranesha, Sandhya Rani PS, Rasal VP (2009) Synthesis of some new 4-aryloxymethyl coumarins and examination of their antibacterial and antifungal activities. J Chem Sci 121:485–495

    Article  CAS  Google Scholar 

  16. Basanagouda M, Jambagi VB, Barigidad NN, Laxmeshwar SS, Devaru V, Narayanachar (2014) Synthesis, structure-activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur J Med Chem 74:225–233

    Article  CAS  Google Scholar 

  17. Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    Article  CAS  Google Scholar 

  18. Lan R, Liu Q, Fan P, Lin S, Fernando SR, McCallion D, Pertwee R, Makriyannis A (1999) Structure-activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J Med Chem 42:769–776

  19. Thipperudrappa J, Raghavendra UP, Basanagouda M (2015) Photophysical characteristics of biologically active coumarins 4PTMBC and 1IPMBC. Spectrochim Acta Part A 136:1475–1483

    Article  CAS  Google Scholar 

  20. Raghavendra UP, Basanagouda M, Melavanki RM, Fattepur RH, Thipperudrappa J (2015) Solvatochromic studies of biologically active iodinated 4-aryloxymethyl coumarins and estimation of dipole moments. J Mol Liq 202:9–16

    Article  CAS  Google Scholar 

  21. Raghavendra UP, Basanagouda M, Thipperudrappa J (2015) Investigation of role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4PTMBC and 1IPMBC. Spectrochim Acta A 150:350–359

    Article  CAS  Google Scholar 

  22. Raghavendra UP, Thipperudrappa J, Basanagouda M, Melavanki RM (2016) Influence of silver nanoparticles on spectroscopic properties of biologically active iodinated 4-aryloxymethyl coumarin dyes. J Lumin 172:139–146

    Article  CAS  Google Scholar 

  23. Karakoti AS, Hench LL, Seal S (2006) The potential toxicity of nanomaterials-the role of surfaces. J Min 58:77–82

    CAS  Google Scholar 

  24. Schneider S, Halbig P, Grau H, Nickel U (1994) Reproducible preparation of silver sols with uniform particle size for application in surface-enhanced Raman spectroscopy. Photochem Photobiol 60:605–610

    Article  Google Scholar 

  25. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New york

    Book  Google Scholar 

  26. Lacerda SH, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4:365–379

    Article  Google Scholar 

  27. Zhang W, Zhang Q, Wang F, Yuan L, Xu Z, Jiang F, Liu Y (2014) Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods. Luminescence 30:397–404

    Article  Google Scholar 

  28. Hu YJ, Liu Y, Wang JB, Xiao XH, Qu SS (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal 36:915–919

    Article  CAS  Google Scholar 

  29. Umberger JQ, Lamer VK (1945) The kinetics of diffusion controlled molecular and ionic reactions in solutions as determined by measurements of the quenching of fluorescence. J Am Chem Soc 67:1099–1109

    Article  CAS  Google Scholar 

  30. Malimath GH, Chikkur GC (1994) Role of energy migration in an organic liquid scintillator system in the 20–70°C temperature range. Appl Radiat Isot 45:143–147

    Article  CAS  Google Scholar 

  31. Edward JT (1970) Molecular volumes and the Stokes–Einstein equation. J Chem Educ 47:261–270

    Article  CAS  Google Scholar 

  32. Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8:259–271

    Article  CAS  Google Scholar 

  33. Jiang ZJ, Liu CY, Li YJ (2004) Electrochemical studies of silver nanoparticles tethered on silica sphere. Chem Lett 33:498–499

    Article  CAS  Google Scholar 

  34. Anbazhagan V, Renganathan R (2009) Investigation of the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by certain substituted uracil. J Lumin 129:382–388

    Article  CAS  Google Scholar 

  35. Kikuchi K, Niwa T, Takahashi Y, Ikeda H, Miyashi T (1993) Quenching mechanism in a highly exothermic region of the Rehm–Weller relationship for electron-transfer fluorescence quenching. J Phys Chem 97:5070–5073

    Article  CAS  Google Scholar 

  36. Nath S, Pal H, Palit DK, Sapre AV, Mittal JP (1998) Steady-state and time-resolved studies on photoinduced interaction of phenothiazine and 10-methylphenothiazine with chloroalkanes. J Phys Chem A 102:5822–5830

    Article  CAS  Google Scholar 

  37. Maiti M, Sinha S, Deb C, De A, Ganguly T (1999) Photophysics of 4-methoxy-benzo[b]thiophene in different environments. Its role in non-radiative transitions both as an electron and as an energy donor. J Lumin 82:259–276

    Article  CAS  Google Scholar 

  38. Kavarnos GJ, Turro NJ (1986) Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem Rev 86:401–449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Management, Director, Dean, and Principal of B.N.M. Institute of Technology, Bangalore, India, for their encouragement and support. Author JT thanks Visvesvaraya Technological University, Belgaum, India, for providing financial assistance to through Research Grant Scheme (Grant No.VTU/Aca./2011-12/A-9/763 dated 5th May 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Thipperudrappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavendra, U., Basanagouda, M., Melavanki, R. et al. Effect of Plasmonic Silver Nanoparticles’ Size on Photophysical Characteristics of 4-Aryloxymethyl Coumarins. Plasmonics 13, 315–325 (2018). https://doi.org/10.1007/s11468-017-0516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0516-2

Keywords

Navigation