Skip to main content
Log in

Coherent-Controlled All-Optical Devices Based on Plasmonic Resonant Tunneling Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, the signal processing in three-port and four-port plasmonic coupler devices by coherently controlling the phases and amplitudes of launched surface plasmons is investigated by finite-difference time-domain method (FDTD) simulation. This device is composed of two metal-dielectric-metal waveguides with a strip cavity imbedded in the shared metal layer. Interference between the plasmonic signals of two input ports is caused by the tunneling effect of surface plasmons in the strip cavity. The functions of signal modulation, recovery, filtering, and plasmon-induced transparency (PIT) of the proposed devices are proposed and demonstrated. The all-optical logic gates based on the proposed devices are also designed and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Bruck R, Muskens OL (2013) Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt Express 21(23):27652–27661. doi:10.1364/OE.21.027652

    Article  Google Scholar 

  2. Fang X, Tseng ML, Ou J-Y, MacDonald KF, Tsai DP, Zheludev NI (2014) Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl Phys Lett 104:141102. doi:10.1063/1.4870635

    Article  Google Scholar 

  3. Zhang J, MacDonald KF, Zheludev NI (2012) Controlling light-with-light without nonlinearity. Light: Sci & Appl 1:e18. doi:10.1038/lsa.2012.18

    Article  Google Scholar 

  4. Fang X, MacDonald KF, Zheludev NI (2015) Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci Appl 4:e292. doi:10.1038/lsa.2015.65

    Article  Google Scholar 

  5. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express 18(6):6191–6204. doi:10.1364/OE.18.006191

    Article  CAS  Google Scholar 

  6. Veronis G, Yu Z, Kocabas SE, Miller DAB, Brongersma ML, Fan S (2009) Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chin Opt Lett 7(4):302–308. doi:10.3788/COL20090704.0302

    Article  CAS  Google Scholar 

  7. Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett 87:013107. doi:10.1063/1/1954880

    Article  Google Scholar 

  8. Fang M, Shi F, Chen Y (2016) Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide. Plasmonics 11:197–203. doi:10.1007/s11468-015-0042-z

    Article  CAS  Google Scholar 

  9. Kang Z, Wang GP (2008) Coupled metal gap waveguides as plasmonic wavelength sorters. Opt Express 16(11):7680–7685. doi:10.1364/OE.16.007680

    Article  Google Scholar 

  10. Mahigir A, Dastmalchi P, Shin W, Fan S, Veronis G (2015) Plasmonic coaxial waveguide-cavity devices. Opt Express 23(16):20549–20562. doi:10.1364/OE.23.020549

    Article  CAS  Google Scholar 

  11. Chen Z, Song X, Duan G, Wang L, Yu L (2015) Multiple Fano resonances control in MIM side-coupled cavities systems. IEEE Photo J 7(3):2701009. doi:10.1109/JPHOT.2015.2433012

    Google Scholar 

  12. Mei X, Huang X, Tao J, Zhu J, Zhu Y, Jin X (2010) A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities. J. Opt. Soc. Am. B 27(12):2707–2713. doi:10.1364/JOSAB.27.002707

    Article  CAS  Google Scholar 

  13. Tao J, Huang XG, Zhu JH (2010) A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. Opt Express 18(11):11111–11116. doi:10.1364/OE.18.011111

    Article  Google Scholar 

  14. He Z, Li H, Zhan S, Li B, Chen Z, Xu H (2015) Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator. Sci Rep 5:15837. doi:10.1038/srep15837

    Article  CAS  Google Scholar 

  15. Shiu RC, Lan YC, Guo GY (2014) Optical multiple bistability in metal-insulator-metal plasmonic waveguides side-coupled with twin racetrack resonators. J Opt Soc Am B 31(11):2581–2586. doi:10.1364/JOSAB.31.002581

    Article  CAS  Google Scholar 

  16. Lee PH, Lan YC (2010) Plasmonic waveguide filters based on tunneling and cavity effects. Plasmonics 5:417–422. doi:10.1007/sll468-010-9159-2

    Article  CAS  Google Scholar 

  17. Melikyan A, Alloatt L, Muslija A, Hillerkuss D, Schindler PC, Li J, Palmer R, Korn D, Muehlbrandt S, Thourhout DV, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J (2014) High-speed plasmonic phase modulators. Nature Photon 8:229–233. doi:10.1038/nphoton.2014.9

    Article  CAS  Google Scholar 

  18. Yu F, Yao D, Knoll W (2004) Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res 32(9):e75. doi:10.1093/nar/gnh067

    Article  Google Scholar 

  19. Wu D, Fang N, Sun C, Zhang X (2003) Terahertz plasmonic high pass filter. Appl Phys Lett 83:201–203. doi:10.1063/1.1591083

    Article  CAS  Google Scholar 

  20. Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. PRL 104:243902. doi:10.1103/PhysRevLett. 104.243902

    Article  Google Scholar 

  21. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater 8:758–762. doi:10.103 8/nmat2495

  22. Yaramadi M, Moravvej-Farshi MK, Yousefi L (2015) Subwavelength grapheme-based plasmonic THz switches and logic gates. IEEE Trans THz Sci Technol 5(5):725–731

    Article  Google Scholar 

  23. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  24. Nieter C, Cary JR (2004) VORPAL: a versatile plasma simulation code. J Comput Phys 196:448–473

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge financial support from the Ministry of Science and Technology, Taiwan (Grant No. 104-2112-M-006-005-MY3). They are also grateful to the National Center for High-Performance Computing, Taiwan, for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Chiang Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HH., Cheng, B.H. & Lan, YC. Coherent-Controlled All-Optical Devices Based on Plasmonic Resonant Tunneling Waveguides. Plasmonics 12, 2005–2011 (2017). https://doi.org/10.1007/s11468-016-0474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0474-0

Keywords

Navigation