Skip to main content
Log in

Nanodisk-Induced Modification of Plasmon Coupling and Appearance of Fano Resonance Without Symmetry Breaking in Concentric Ag Nanoring-Nanodisk

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Simulation based on the finite-difference time-domain (FDTD) has been performed, and theoretical models comprising concentric Ag nanoring-nanodisk of different parameters have been constructed to research their plasmon properties. According to unique electronic properties of concentric nanoring-nanodisk, abundant plasmon properties could be obtained at their interfaces, including dipole, quadrupole, and octupole plasmon resonance modes. Complex field distributions which are induced by concentric nanoring-nanodisk support the possibility to create dark resonance mode. This can lead to Fano-like resonance combining with bright resonance mode by predominantly dipole resonance. A concentric nanoring-nanodisk system has been proved to support Fano-like resonance without symmetry breaking. At the frequency of the Fano resonance, strong localized optical fields can be obtained. Narrow spectral features with high local fields of Fano resonances make it possible to achieve many applications based on surface plasmon property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O’Brien MN, Jones R, Brown KA, Mirkin CA, Am J (2014) Chem Soc 136(21):7603–7606

    Article  CAS  Google Scholar 

  2. Clavero C (2014) Nat Photonics 8:95–103

    Article  CAS  Google Scholar 

  3. Grzelczak M, Liz-Marzánab LM (2014) Chem Soc Rev 43:2089–2097

    Article  CAS  PubMed  Google Scholar 

  4. Kanté B, Park Y, O’Brien K, Shuldman D, Lanzillotti-Kimura ND, Wong ZJ, Yin XB, Zhang X (2012) Nat Commun 3:1180

    Article  CAS  PubMed  Google Scholar 

  5. Scholl JA, Koh AL, Dionne JA (2012) Nature 483:421–427

    Article  CAS  PubMed  Google Scholar 

  6.  Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

  7. Wiley PAL, Xia B, Chen Y, Dalton A (2008) Nat Nanotechnol 3:660–665

    Article  CAS  PubMed  Google Scholar 

  8. Wang JL, Ando RA, Camargo Pedro HC (2014) ACS Catal 4(11):3815–3819

    Article  CAS  Google Scholar 

  9. Xu XB, Luo JS, Liu M, Wang YY, Yi Z, Li XB, Yi YG, Tang YJ (2015) Phys Chem Chem Phys 17:2641–2650

    Article  CAS  PubMed  Google Scholar 

  10. Huidobro PA, Shen XP, Cuerda J, Moreno E, Martin-Moreno L, Garcia-Vidal FJ, Cui TJ, Pendry JB (2014) Phys Rev X 4:021003

    Google Scholar 

  11. Chen H, Shao L, Lia Q, Wang JF (2013) Chem Soc Rev 42:2679–2724

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt F, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR (2012) Nano Lett 12(11):5780–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu XB, Yi Z, Li XB, Wang YY, Geng X, Luo JS, Luo BC, Yi YG, Tang YJ (2012) J Phys Chem C 116:24046–24053

    Article  CAS  Google Scholar 

  14. Yi Z, Luo JS, Yi Y, Xu XB, Wu PH, Jiang XD, Yi YG, Tang YJ (2014) RSC Adv 4:23670–23678

    Article  CAS  Google Scholar 

  15. Yi Z, Xu XB, Li XB, Luo JS, Wu WD, Tang YJ, Yi YG (2011) Appl Surf Sci 258:212–217

    Article  CAS  Google Scholar 

  16. Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, Garcíade-Abaj FJ (2003) Phys Rev Lett 90:057401

    Article  CAS  PubMed  Google Scholar 

  17. Yi Z, Niu G, Chen JF, Luo JH, Liu XN, Yi Y, Duan T, Kang XL, Ye X, Wu PH, Tang YJ (2016) Plasmonics 11:37–44

    Article  CAS  Google Scholar 

  18. Davoyan AR, Engheta N (2013) Phys Rev Lett 111:047401

    Article  CAS  PubMed  Google Scholar 

  19. Yang ZYB, Jensen YW, Fang L, Juluri L, Flood BK, Weiss AH, Stoddart PS, Huang JF (2009) Nano Lett 9:819–825

    Article  CAS  PubMed  Google Scholar 

  20. Cetin AE, Altug H (2012) ACS Nano 11:9989–9995

    Article  CAS  Google Scholar 

  21. Yi Z, Li XB, Luo JS, Yi Y, Xu XB, Wu PH, Jiang XD, Wu WD, Yi YG, Tang YJ (2014) Plasmonics 9:375–379

    Article  CAS  Google Scholar 

  22. Yi Z, Luo JS, Yi Y, Kang XL, Ye X, Bi P, Wu PH, Jiang XD, Yi YG, Tang YJ (2015) Op Mat Express 5:210–217

    Article  CAS  Google Scholar 

  23. Zhang Y, Jia TQ, Zhang HM, Xu ZZ (2012) Opt Lett 36(9):1542–1544

    Google Scholar 

  24. Wu CH, Khanikaev AB, Adato R, Arju N, Yanik AA, Shvets HAG (2012) Nat Mater 11:69–75

    Article  CAS  Google Scholar 

  25. Zhang Q, Xiao JJ (2013) Opt Lett 38:4240–4243

    Article  PubMed  Google Scholar 

  26. Hao F, Nordlander P (2007) Phys Rev B 76:245417

    Article  CAS  Google Scholar 

  27. Chang YT, Tzuang DC, Wu YT, Chan CF, Ye YH, Hung TH, Chen YF, Lee SC (2008) Appl Phys Lett 92:253111

    Article  CAS  Google Scholar 

  28. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Nano Lett 8:3983–3988

    Article  CAS  PubMed  Google Scholar 

  29. Fu YH, Zhang JB, Yu YF, Yanchuk BL (2012) ACS Nano 6:5130–5137

    Article  CAS  PubMed  Google Scholar 

  30. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2010) ACS Nano 3:1664–1670

    Article  CAS  Google Scholar 

  31. Giannuzzi LA, Stevie FA (2004) Introduction to focused ion beams: instrumentation, theory, techniques and practice. Springer, New York, pp 1–12

    Google Scholar 

  32. Zhang JC, Wei LY, Huang CL, Zhang QQ, Yi Y, Zeng Y, Zhu XL, Fan QP, Qian F, Wei L, Wang HB, Wu WD, Cao LF (2014) Chin Phys Let 31(12):124204

    Article  Google Scholar 

  33. The simulations were performed by the FDTD solutions trademark software, http://www.lumerical.com

  34. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Appl Opt 37(22):5271–5283

    Article  CAS  PubMed  Google Scholar 

  35. Palik ED (1998) Handbook of optical constants of solids III

    Google Scholar 

  36. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) ACS Nano 3:643–652

    Article  CAS  PubMed  Google Scholar 

  37. Wu DJ, Jiang SM, Liu XJ (2012) J Chem Phys 136:034502

    Article  CAS  PubMed  Google Scholar 

  38. Xu XB, Liu M, Luo JS, Wang YY, Yi Z, Li XB, Yi YG, Tang YJ (2015) Plasmonics 10(4):797–808

    Article  CAS  Google Scholar 

  39. Wu DJ, Jiang SM, Liu XJ, Phys J (2011) Chem C 115:23797–23801

    CAS  Google Scholar 

  40. Fan PY, Yu ZF, Fan SH, Brongersma ML (2014) Nat Mater 13:471–475

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (No. 60908023; 11375159; 51306165), Open Foundation of Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP (No. 12zxjk07), the foundation of technology on ultraexact machining laboratory of CAEP (No. ZZ14010), the Research Fund for the Doctoral Program of Southwest University of Science and Technology (No. 14zx7144), Scientific Reserch Fund of SiChuan Provincial Education Department (13ZB0177), Mianyang science and technology plan projects (14S-01-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Jiang, Jin Huang, Yong Yi or Tao Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Niu, G., Ye, X. et al. Nanodisk-Induced Modification of Plasmon Coupling and Appearance of Fano Resonance Without Symmetry Breaking in Concentric Ag Nanoring-Nanodisk. Plasmonics 12, 889–898 (2017). https://doi.org/10.1007/s11468-016-0340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0340-0

Keywords

Navigation