Skip to main content
Log in

Transient Optical and Terahertz Spectroscopy of Nanoscale Films of RuO2

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Solution-deposited nanoscale films of RuO2 (nanoskins) are effective transparent conductors once calcined to 200 °C. Upon heating to higher temperatures, the nanoskins show increased transmission at 550 nm, indicating changes in the optical behavior of the films. Electronic microscopy and X-ray diffraction show that the changes in the optical spectrum are accompanied by the formation of rutile RuO2 nanoparticles. The mechanism for the spectral evolution is clearly observed with ultrafast optical measurements. Following excitation at 400 nm, nanoskins calcined at higher temperatures show increased transmission above 650 nm, consistent with the photobleaching of a surface plasmon resonance (SPR) band. Calculations based on the optical constants of RuO2 substantiate the presence of SPR absorption. Sheet resistance and transient terahertz photoconductivity measurements establish that the nanoskins electrically de-wire into separated particles. The plasmonic behavior of the nanoskins has implications for their use in a range of optical and electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goodenough JB (1971) Metallic oxides. Prog Solid State Chem 5:145–399. doi:10.1016/0079-6786(71)90018-5

    Article  CAS  Google Scholar 

  2. Over H, Muhler M (2003) Catalytic CO oxidation over ruthenium—bridging the pressure gap. Prog Surf Sci 72(1–4):3–17. doi:10.1016/s0079-6816(03)00011-x

    Article  CAS  Google Scholar 

  3. Rolison DR, Hagans PL, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15(3):774–779. doi:10.1021/la9807863

    Article  CAS  Google Scholar 

  4. Trasatti S (2000) Electrocatalysis: understanding the success of DSA (r). Electrochim Acta 45(15–16):2377–2385. doi:10.1016/s0013-4686(00)00338-8

    Article  CAS  Google Scholar 

  5. Pietron JJ, Pomfret MB, Chervin CN, Long JW, Rolison DR (2012) Direct methanol oxidation at low overpotentials using Pt nanoparticles electrodeposited at ultrathin conductive RuO2 nanoskins. J Mater Chem 22(11):5197–5204. doi:10.1039/c2jm15553b

    Article  CAS  Google Scholar 

  6. Allhusen JS, Conboy JC (2013) Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films. ACS Appl Mater Interfaces 5(22):11683–11691. doi:10.1021/am403219p

    Article  CAS  PubMed  Google Scholar 

  7. Hara Y, Rengakuji S, Nakamura Y, Shinagawa A (2002) Preparation of transparent conductive RuO2 thin film from its precursor solution. Electrochemistry 70(1):13–17

    CAS  Google Scholar 

  8. Jeng J-S, Lin Y-T, Chen JS (2010) Preparation and characterization of transparent semiconductor RuO2–SiO2 films synthesized by sol–gel route. Thin Solid Films 518(19):5416–5420. doi:10.1016/j.tsf.2010.03.075

    Article  CAS  Google Scholar 

  9. Long JW, Owrutsky JC, Chervin CN, Rolison DR, Melinger JS Article e.G. As a film used in optical application comprises substrate, and ruthenium dioxide coating on a portion of substrate, where the coating comprises nanoparticles of ruthenium dioxide. US2011091723-A1; WO2011066488-A1; EP2525971-A1; KR2013004894-A; JP2013512130-W

  10. Sugimoto W, Yokoshima K, Ohuchi K, Murakami Y, Takasu Y (2006) Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. J Electrochem Soc 153(2):A255–A260. doi:10.1149/1.2138570

    Article  CAS  Google Scholar 

  11. Belkind A, Orban Z, Vossen JL, Woollam JA (1992) Optical-properties of RuO2 films deposited by reactive sputtering. Thin Solid Films 207(1–2):242–247. doi:10.1016/0040-6090(92)90131-t

    Article  CAS  Google Scholar 

  12. Chervin CN, Lubers AM, Long JW, Rolison DR (2010) Effect of temperature and atmosphere on the conductivity and electrochemical capacitance of single-unit-thick ruthenium dioxide. J Electroanal Chem 644(2):155–163. doi:10.1016/j.jelechem.2010.01.002

    Article  CAS  Google Scholar 

  13. Chervin CN, Lubers AM, Pettigrew KA, Long JW, Westgate MA, Fontanella JJ, Rolison DR (2009) Making the most of a scarce platinum-group metal: conductive ruthenia nanoskins on insulating silica paper. Nano Lett 9(6):2316–2321. doi:10.1021/nl900528q

    Article  CAS  PubMed  Google Scholar 

  14. Sassin MB, Chervin CN, Rolison DR, Long JW (2013) Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors. Acc Chem Res 46(5):1062–1074. doi:10.1021/ar2002717

    Article  CAS  PubMed  Google Scholar 

  15. Liao PC, Mar SY, Ho WS, Huang YS, Tiong KK (1996) Characterization of RuO2 thin films deposited on Si by metal-organic chemical vapor deposition. Thin Solid Films 287(1–2):74–79

    Article  CAS  Google Scholar 

  16. Huang YS, Liao PC (1998) Preparation and characterization of RuO2 thin films. Sol Energy Mater Sol Cells 55(1–2):179–197. doi:10.1016/s0927-0248(98)00057-9

    Article  CAS  Google Scholar 

  17. Liao PC, Huang YS, Tiong KK (2001) Characterization of RuO2 and IrO2 films deposited on si substrate. J Alloys Compd 317:98–102. doi:10.1016/s0925-8388(00)01403-1

    Article  Google Scholar 

  18. Ryan JV, Berry AD, Anderson ML, Long JW, Stroud RM, Cepak VM, Browning VM, Rolison DR, Merzbacher CI (2000) Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2. Nature 406(6792):169–172. doi:10.1038/35018040

    Article  CAS  PubMed  Google Scholar 

  19. Owrutsky JC, Long JP, Chervin CN, Bussmann K, Rolison DR (2015) The effect of disorder on the optical constants of nanoscale RuO2. Thin Solid Films 589(0):344–350. doi:10.1016/j.tsf.2015.05.058

    Article  CAS  Google Scholar 

  20. Hones P, Gerfin T, Gratzel M (1995) Spectroscopic ellipsometry of RuO2 films prepared by metalorganic chemical-vapor-deposition. Appl Phys Lett 67(21):3078–3080. doi:10.1063/1.114870

    Article  CAS  Google Scholar 

  21. Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 1(6):1090–1099. doi:10.1364/OME.1.001090

    Article  CAS  Google Scholar 

  22. Wang L, Clavero C, Yang K, Radue E, Simons MT, Novikova I, Lukaszew RA (2012) Bulk and surface plasmon polariton excitation in RuO2 for low-loss plasmonic applications in NIR. Opt Express 20(8):8618–8628. doi:10.1364/OE.20.008618

    Article  CAS  PubMed  Google Scholar 

  23. Certain commercial equipment or materials are identified in this paper to adequately specify the experimental procedure. In no case does the identification imply recommendation or endorsement by NIST, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose

  24. Esenturk O, Melinger JS, Heilweil EJ (2008) Terahertz mobility measurements on poly-3-hexylthiophene films: device comparison, molecular weight, and film processing effects. J Appl Phys 103(2):023102. doi:10.1063/1.2828028

    Article  CAS  Google Scholar 

  25. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111(6):3858–3887. doi:10.1021/cr1002547

    Article  CAS  PubMed  Google Scholar 

  26. Goel AK, Skorinko G, Pollak FH (1981) Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV. Phys Rev B 24(12):7342–7350. doi:10.1103/PhysRevB.24.7342

    Article  CAS  Google Scholar 

  27. Hodak JH, Martini I, Hartland GV (1998) Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 102(36):6958–6967. doi:10.1021/jp9809787

    Article  CAS  Google Scholar 

  28. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453. doi:10.1080/01442350050034180

    Article  CAS  Google Scholar 

  29. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. John Wiley & Sons, New York

    Google Scholar 

  30. Lytle JC, Rhodes CP, Long JW, Pettigrew KA, Stroud RM, Rolison DR (2007) The importance of combining disorder with order for li-ion insertion into cryogenically prepared nanoscopic ruthenia. J Mater Chem 17(13):1292–1299. doi:10.1039/b614433k

    Article  CAS  Google Scholar 

  31. Neugebauer CA, Webb MB (1962) Electrical conduction mechanism in ultrathin, evaporated metal films. J Appl Phys 33(1):74–82. doi:10.1063/1.1728531

    Article  CAS  Google Scholar 

  32. Lane PA, Cunningham PD, Melinger JS, Esenturk O, Heilweil EJ (2015) Hot photocarrier dynamics in organic solar cells. Nat Comm 6:7558. doi:10.1038/ncomms8558

    Article  CAS  Google Scholar 

  33. Laman N, Grischkowsky D (2008) Terahertz conductivity of thin metal films. Appl Phys Lett 93(5):051105. doi:10.1063/1.2968308

    Article  CAS  Google Scholar 

  34. Jnawali G, Rao Y, Yan HG, Heinz TF (2013) Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett 13(2):524–530. doi:10.1021/nl303988q

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Jeffrey W. Long and James P. Long for useful discussion, Ani Khachatrian for assistance with steady-state THz spectroscopy, Dr. Christopher So for AFM measurements, and Dr. Daniel Ratchford for fabricating thin films of gold. This work was supported by the Office of Naval Research through the U.S. Naval Research Laboratory and by NIST STRS internal funding. A.D., R.C., B.S., and I.R.P. thank the National Research Council for administering the postdoctoral fellowship program at NRL. B.A. thanks the National Research Council for supporting the postdoctoral fellowship at NIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Owrutsky.

Electronic Supplementary Material

ESM 1

(DOCX 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunkelberger, A.D., Compton, R., DeSario, P.A. et al. Transient Optical and Terahertz Spectroscopy of Nanoscale Films of RuO2 . Plasmonics 12, 743–750 (2017). https://doi.org/10.1007/s11468-016-0321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0321-3

Keywords

Navigation