Skip to main content
Log in

Analogue Electromagnetically Induced Transparency Based on Low-loss Metamaterial and its Application in Nanosensor and Slow-light Device

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we demonstrated a low-loss and high-transmission analogy of electromagnetically induced transparency based on all-dieletric metasurface. The metamaterial unit cell structure is composed of two mutually perpendicular silicon nanoscale bars. Under the joint effects of the neighboring meta-atoms’ coherent interaction and significant low absorption loss, the transmission and the Q-factor can reach up to 93 % and 139, respectively. Moreover, we use the coupled harmonic oscillator model to analyze the near field interaction between the two elements in the electromagnetically induced transparency (EIT) metamaterial unit cell qualitatively and the effects of parameters on EIT. The figure-of-merit of 42 and the group delay of 0.65 ps are obtained. These characteristics make the metamaterial structure with potential to apply for ultrafast switches, sensor, and slow-light devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eberly J (1998) Area theorem rederived. Opt Express 2(5):173–176. doi:10.1364/OE.2.000173

    Article  CAS  PubMed  Google Scholar 

  2. Harris SE (1997) Electromagnetically induced transparency. Phys Today 50(7):36. doi:10.1063/1.881806

    Article  CAS  Google Scholar 

  3. Vafapour Z, Zakery A (2015) New approach of plasmonically induced reflectance in a planar metamaterial for plasmonic sensing applications. Plasmonics 11(2):609–618. doi:10.1007/s11468-015-0077-1

    Article  CAS  Google Scholar 

  4. Vafapour Z, Zakery A (2015) New regime of plasmonically induced transparency. Plasmonics 10(6):1809–1815. doi:10.1007/s11468-015-9992-4

    Article  Google Scholar 

  5. Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151. doi:10.1038/ncomms2153

    Article  CAS  PubMed  Google Scholar 

  6. Papasimakis N, Fu YH, Fedotov VA, Prosvirnin SL, Tsai DP, Zheludev NI (2009) Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl Phys Lett 94(21):211902. doi:10.1063/1.3138868

    Article  CAS  Google Scholar 

  7. Li H-m, Liu S-b, Liu S-y, Wang S-y, Zhang H-f, Bian B-r, Kong X-k (2015) Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance. Appl Phys Lett 106:114101. doi:10.1063/1.4915313

    Article  CAS  Google Scholar 

  8. Shao J, Li J, Li J, Wang Y-K, Dong Z-G, Chen P, Wu R-X, Zhai Y (2013) Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial. Appl Phys Lett 102(3):034106. doi:10.1063/1.4789432

    Article  CAS  Google Scholar 

  9. Tassin P, Zhang L, Zhao R, Jain A, Koschny T, Soukoulis CM (2012) Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys Rev Lett 109:187401. doi:10.1103/PhysRevLett.109.187401

    Article  CAS  PubMed  Google Scholar 

  10. Safavi-Naeini AH, Mayer Alegre TP, Chan J, Eichenfield M, Winger M, Lin Q, Hill JT, Chang DE, Painter O (2011) Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341):69–73. doi:10.1038/nature09933

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Xiao S, Jeppesen C, Kristensen A, Mortensen NA (2010) Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt Express 18(16):17187–17192. doi:10.1364/OE.18.017187

    Article  CAS  PubMed  Google Scholar 

  12. Li H-m, Liu S-b, Liu S-y, Wang S-y, Ding G-w, Yang H, Yu Z-y, Zhang H-f (2015) Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response. Appl Phys Lett 106(8):083511. doi:10.1063/1.4913888

    Article  CAS  Google Scholar 

  13. Sun Y, Tong Y-w, Xue C-h, Ding Y-q, Li Y-h, Jiang H, Chen H (2013) Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials. Appl Phys Lett 103(9):091904. doi:10.1063/1.4819854

    Article  CAS  Google Scholar 

  14. Zhu L, Meng FY, Fu JH, Wu Q, Hua J (2012) An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency. IEEE Trans Magn 48(11):4285–4288. doi:10.1109/TMAG.2012.2200661

    Article  Google Scholar 

  15. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  CAS  PubMed  Google Scholar 

  16. Boltasseva A, Atwater HA (2011) Materials science. Low-loss plasmonic metamaterials. Science 331(6015):290–291. doi:10.1126/science.1198258

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14(3):1394–1399. doi:10.1021/nl4044482

    Article  CAS  PubMed  Google Scholar 

  18. Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J (2013) Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 7(10):791–795. doi:10.1038/nphoton.2013.214

    Article  CAS  Google Scholar 

  19. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401. doi:10.1103/PhysRevLett.101.047401

    Article  CAS  PubMed  Google Scholar 

  20. Fan SH, Suh W, Joannopoulos JD (2003) Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A Opt Image Sci Vis 20(3):569–572. doi:10.1364/josaa.20.000569

    Article  PubMed  Google Scholar 

  21. Yang Y, Kravchenko II, Briggs DP, Valentine J (2014) All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5:5753. doi:10.1038/ncomms6753

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Fan C, He J, Ding P, Liang E, Xue Q (2013) Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt Express 21(2):2236–2244. doi:10.1364/OE.21.002236

    Article  PubMed  Google Scholar 

  23. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  PubMed  Google Scholar 

  24. Li BX, Li HJ, Zeng LL, Zhan SP, He ZH, Chen ZQ, Xu H (2015) High-sensitivity sensing based on plasmon-induced transparency. IEEE Photonics J 7(5):1–7. doi:10.1109/jphot.2015.2483202

    Article  Google Scholar 

  25. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663. doi:10.1021/nl200135r

    Article  CAS  PubMed  Google Scholar 

  26. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107. doi:10.1021/nl902621d

    Article  CAS  PubMed  Google Scholar 

  27. Lu H, Liu X, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85(5):053803

    Article  CAS  Google Scholar 

  28. Wu J, Jin B, Wan J, Liang L, Zhang Y, Jia T, Cao C, Kang L, Xu W, Chen J, Wu P (2011) Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Appl Phys Lett 99(16):161113. doi:10.1063/1.3653242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61275059, 11374107, and 61475049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruisheng Liang.

Additional information

Zhongchao Wei and Xianping Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Li, X., Zhong, N. et al. Analogue Electromagnetically Induced Transparency Based on Low-loss Metamaterial and its Application in Nanosensor and Slow-light Device. Plasmonics 12, 641–647 (2017). https://doi.org/10.1007/s11468-016-0309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0309-z

Keywords

Navigation