Skip to main content

Advertisement

Log in

Optimization of the Bowtie Gap Geometry for a Maximum Electric Field Enhancement

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Optimization of the geometry of a metallic bowtie gap at radio frequency is presented. We investigate the geometry of the bowtie gap including gap size, tip width, metal thickness and tip angle at macroscale to find the maximum electric field enhancement across the gap. The results indicate that 90 bowtie with 0.06 λ gap size has the most |E t |2 enhancement. Effects of changing the permittivity and conductivity of the material across the gap are also investigated. NEC-2 simulations show that the numerical calculations agree with the experimental results. Since the design and fabrication of a plasmonic device (nanogap) at nanoscale is challenging, the results of this study can be used to estimate the best design parameters for nanogap structure. Different amounts of enhancement at different frequency ranges are explained by mode volume. The product of the mode volume and |E t |2 enhancement is constant for different gap structures and different frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figdor CG (2001) J Cell Sci 114:4153

    CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Nature Photonics 4(2):83

    Article  CAS  Google Scholar 

  3. Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E (1986) Biophys J 49(1):269

    Article  CAS  Google Scholar 

  4. Pohl DW, Denk W, Lanz M (1984) Appl Phys Lett 44:651

    Article  Google Scholar 

  5. Betzig E, Harootunian A, Lewis A, Isaacson M (1986) Appl Opt 25(12):1890

    Article  CAS  Google Scholar 

  6. Bouillard JS, Vilain S, Dickson W, Zayats AV (2010) Opt Express 18(16):16513

    Article  CAS  Google Scholar 

  7. Berweger S, Weber JC, John J, Velazquez JM, Pieterick A, Sanford NA, Davydov AV, Brunschwig B, Lewis NS, Wallis TM, Kabos P (2015) Nano Lett 15(2):1122

    Article  CAS  Google Scholar 

  8. Cricenti A, Generosi R, Luce M, Perfetti P, Margaritondo G, Talley D, Sanghera JS, Aggarwal ID, Tolk NH, Congiu-Castellano A, Rizzo MA, Piston DW (2003) Biophys J 4: 2705

    Article  Google Scholar 

  9. Hinterdorfer P, Garcia-Parajo MF, Dufrṅe YF (2012). Acc Chem Res 45(3):327

    Article  CAS  Google Scholar 

  10. Fang Y. (2015). Biosensors 5(2):223

    Article  CAS  Google Scholar 

  11. Bohn BJ, Schnell M, Kats MA, Aieta F, Hillenbrand R, Capasso F (2015) Nano Lett 15(6):3851

    Article  CAS  Google Scholar 

  12. Johnson JC, Yan H, Schaller RD, Petersen PB, Yang P, Saykally RJ (2002) Nano Lett 2(4):279

    Article  CAS  Google Scholar 

  13. Khatib O, Wood JD, McLeod AS, Goldflam MD, Wagner M, Damhorst GL, Koepke JC, Doidge GP, Rangarajan A, Bashir R, Pop E, Lyding JW, Thiemens MH, Keilmann F, Basov DN (2015) ACS Nano 9(8):7968

    Article  CAS  Google Scholar 

  14. Gan Q, Bartoli FJ, Kafafi ZH (2013) Adv Mater 25(17):2377

    Article  CAS  Google Scholar 

  15. Moerner WE (2007) Physical principles and methods of single-molecule spectroscopy in solids:1–30

  16. Xia T, Li N, Fang X (2013) Annu Rev Phys Chem 64(1):459

    Article  CAS  Google Scholar 

  17. Walt DR (2013) Anal Chem 85(3):1258

    Article  CAS  Google Scholar 

  18. Yeh HC, Chao SY, Ho YP, Wang TH (2005) Curr Pharm Biotechnol 6(6):453

    Article  CAS  Google Scholar 

  19. Li J, Chen S, Yu P, Cheng H, Duan X, Tian J (2013) Opt Express 21(8):10342

    Article  Google Scholar 

  20. Li J, Chen S, Yu P, Cheng H, Chen L (2012) J Tian, Plasmonics 8(2):495

    Article  Google Scholar 

  21. Li J, Chen S, Yu P, Cheng H, Zhou W, Tian J (2011) Opt Lett 36(20):4014

    Article  Google Scholar 

  22. Butet J, Brevet PF, Martin OJF (2015) ACS Nano 9(11):10545

    Article  CAS  Google Scholar 

  23. Stewart ME, Anderton CR, Thompson LB, Maria J., Gray SK, Rogers JA, Nuzzo RG (2008) Chem Rev 108(2):494

    Article  CAS  Google Scholar 

  24. Im H, Bantz KC, Lindquist NC, Haynes CL, Oh SH (2010) Nano Lett 10(6):2231

    Article  CAS  Google Scholar 

  25. Kang M, Park SG, Jeong KH (2015) Sci Rep 5:14790

    Article  CAS  Google Scholar 

  26. Liu Z, Boltasseva A, Pedersen RH, Bakker R, Kildishev AV, Drachev VP, Shalaev VM (2008) Metamaterials 2(1):45

    Article  Google Scholar 

  27. Giannini V, Fernn̈dez-Domṉguez AI, Heck SC, Maier SA (2011) Chem Rev 111(6):3888

    Article  CAS  Google Scholar 

  28. Kim MK, Sim H, Yoon SJ, Gong SH, Ahn CW, Cho YH, Lee YH (2015) Nano Lett 15(6):4102

    Article  CAS  Google Scholar 

  29. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  30. Li EP, Chu HS (2014) Plasmonic nanoelectronics and sensing. Cambridge University Press, New York

    Book  Google Scholar 

  31. Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, New York

    Google Scholar 

  32. Grober RD, Schoelkopf RJ, Prober DE (1997) Appl Phys Lett 70:1354

    Article  CAS  Google Scholar 

  33. Burke J, Poggio AJ (1980) Numerical electromagentics code (nec)-method of moments part 1, 2, and 3 in Report NOSC TD, vol 116. Naval Ocean Systems Center, San Diego

    Google Scholar 

  34. Stutzman WL (2012) Antenna theory and design, 3rd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Hoon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakoutian, M., Byambadorj, T., Davaji, B. et al. Optimization of the Bowtie Gap Geometry for a Maximum Electric Field Enhancement. Plasmonics 12, 287–292 (2017). https://doi.org/10.1007/s11468-016-0262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0262-x

Keywords

Navigation