Skip to main content
Log in

Ultra-Subwavelength and Low Loss in V-Shaped Hybrid Plasmonic Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A new kind of hybrid plasmonic waveguide is proposed, and its propagation properties are investigated using the finite-element method. This waveguide consists of a V-shaped silver nanowire embedded in a low-index dielectric cladding above a semiconductor substrate, which can confine light in the subwavelength region with a long propagation length. The field distribution, the mode effective index, the propagation length, and the normalized mode area of the hybrid mode supported by the waveguide are investigated at the wavelength of 1550 nm, which are dependent on the geometric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raether H (1998) Surface plasmons. Springer, Berlin Heidelberg

    Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  4. Manjacavas A, Garcia de Abajo FJ (2009) Robust plasmon waveguides in strongly interacting nanowire array. Nano Lett 9:1285–1289

    Article  Google Scholar 

  5. Zhang ZX, Hu ML, Chan KT, Wang CY (2009) Plasmonic waveguiding in a hexagonally ordered metal wire array. Opt Lett 35:3901–3903

    Article  Google Scholar 

  6. Zou CL, Sun FW, Xiao YF, Dong CH, Chen XD, Cui JM, Gong Q, Han ZF, Guo GC (2010) Plasmon modes of silver nanowire on a silica substrate. Appl Phys Lett 97:183102

    Article  Google Scholar 

  7. Bian YS, Gong QH (2013) Metallic nanowire-loaded plasmonic slot waveguide for highly confined light transport at telecom wavelength. IEEE J Quantum Electron 49:870–876

    Article  CAS  Google Scholar 

  8. Veronis G, Fan SH (2005) Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30:3359–3361

    Article  Google Scholar 

  9. Dionne JA, Swearlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  Google Scholar 

  10. Ly-Gagnon DS, Kocabas SE, Miller DAB (2008) Characteristic impedance model for plasmonic metal slot waveguides. IEEE J Sel Topics Quantum Electron 14:1473–1478

    Article  CAS  Google Scholar 

  11. Liu L, Han ZH, He SL (2005) Novel surface plasmon waveguide for high integration. Opt Exp 13:6645–6650

    Article  Google Scholar 

  12. Han Z, Elezzabi AY, Van V (2010) Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. Opt Lett 35:502–504

    Article  CAS  Google Scholar 

  13. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95:046802

    Article  Google Scholar 

  14. Pile DFP, Gramotnev DK (2004) Channel plasmon-polariton in a triangular groove on a metal surface. Opt Lett 29:1069–1071

    Article  CAS  Google Scholar 

  15. Maier SA, Friedman MD, Barclay PE, Painter O (2005) Experimental demonstration of accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl Phys Lett 86:071103

    Article  Google Scholar 

  16. Fu YL, Hu XY, Lu CC, Yue S, Yang H, Gong QH (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12:5784–5790

    Article  CAS  Google Scholar 

  17. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    Article  CAS  Google Scholar 

  18. Sorger VJ, Ye Z, Oulton RF, Wang Y, Bartal G, Yin X, Zhang X (2011) Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nature Commun 2:331

    Article  Google Scholar 

  19. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2:496–500

    Article  CAS  Google Scholar 

  20. Dai D, He S (2009) A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Exp 17:16646–16653

    Article  CAS  Google Scholar 

  21. Fujii M, Leuthold J, Freude W (2009) Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photon Technol Lett 21:362–364

    Article  CAS  Google Scholar 

  22. Su Y, Zheng Z, Bian Y, Liu Y, Liu J, Zhu J, Zhou T (2011) Low-loss silicon-based hybrid plasmonic waveguide with an air nano trench for sub-wavelength mode confinement. Micro Nano Lett IET 6:643–645

    Article  CAS  Google Scholar 

  23. Lou F, Dai DX, Wosinski L (2012) Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler. Opt Lett 37:3372–3374

    Article  CAS  Google Scholar 

  24. Volkov VS, Han ZH, Nielsen MG, Leosson K, Keshmiri H, Gosciniak J, Albrektsen O, Bozhevolnyi SI (2011) Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. Opt Lett 36:4278–4280

    Article  Google Scholar 

  25. Ma YQ, Farrell G, Semenova Y, Wu Q (2014) Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement. Opt Lett 39:973–976

    Article  CAS  Google Scholar 

  26. Bian YS, Gong QH (2014) Long-range hybrid ridge and trench plasmonic waveguides. Appl Phys Lett 104:251115

    Article  Google Scholar 

  27. Olyaeefar B, Khoshsima H (2014) Low-loss ultra-subwavelength hybrid plasmonic waveguide based on metallic bump structures. J Phys D Appl Phys 47:105105

    Article  Google Scholar 

  28. Wijesinghe T, Premaratne M, Agrawal GP (2014) Electrically pumped hybrid plasmonic waveguide. Opt Exp 22:2681–2694

    Article  Google Scholar 

  29. Amirhosseini A, Safian R (2013) A Hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55μm on SOI substrate. IEEE Trans Nanotechnol 12:1031–1036

    Article  CAS  Google Scholar 

  30. Xiang C, Wang J (2013) Long-range hybrid plasmonic slot waveguide. IEEE Photon J 5:4800311

    Article  Google Scholar 

  31. Zhang T, Chen L, Li X (2013) Reduction of propagation loss by introducing hybrid plasmonic model in graded-grating based “trapped rainbow” system. Opt Commun 301–302:116–120

    Article  Google Scholar 

  32. Mu JW, Chen L, Li X, Huang WP, Kimerling LC, Michel J (2013) Hybrid nano ridge plasmonic polaritons waveguides. Appl Phys Lett 103:131107

    Article  Google Scholar 

  33. Alam MZ, Bahrami F, Aitchison JS, Mojahedi M (2014) Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing. IEEE Photon J 6:3700110

    Article  Google Scholar 

  34. Tian JP, Zhang CJ, Liang XJ, Li HJ (2013) Mode analysis of a symmetric hybrid surface plasmonic waveguide for photonic integration. IEEE Photon Technol Lett 49:331–334

    CAS  Google Scholar 

  35. Pile DFP, Gramotnev DK (2005) Plasmonic subwavelength waveguides: next to zero losses at sharpbends. Opt Lett 30:1186–1188

    Article  CAS  Google Scholar 

  36. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is financially supported by National Natural Foundation of China (Grant No. 61575117), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. GK201601008), and the Fostering Fund of Xian university of science and technology (Grant No. 2010045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Z. Ultra-Subwavelength and Low Loss in V-Shaped Hybrid Plasmonic Waveguide. Plasmonics 12, 59–63 (2017). https://doi.org/10.1007/s11468-016-0228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0228-z

Keywords

Navigation