Skip to main content
Log in

Probing the Plasmon-Phonon Hybridization in Supported Graphene by Externally Moving Charged Particles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We use the dielectric response formalism to show how an incident charged particle may be used to probe the hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a SiO2 substrate. Strong effects of this hybridization are found in the wake pattern in the induced potential, as well as in the stopping and image forces that act on the incident charge in a broad range of its velocities. Particularly intriguing is the possibility to control the plasmon-phonon hybridization by varying the doping density of graphene, where the regime of a nominally neutral graphene is expected to give rise to dramatic effects in the energy loss of charged particles that move at the velocities below the Fermi velocity of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Das Sarma S, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407–470

    Article  CAS  Google Scholar 

  2. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  3. Nelson FJ, Idrobo JC, Fite JD, Mišković ZL, Pennycook SJ, Pantelides ST, Lee JU, Diebold AC (2014) Electronic excitations in graphene in the 1–50 eV range: the π and π + σ peaks are not plasmons. Nano Lett 14:3827–3831

    Article  CAS  Google Scholar 

  4. Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  5. Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435

    Article  Google Scholar 

  6. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    Article  CAS  Google Scholar 

  7. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  CAS  Google Scholar 

  8. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  CAS  Google Scholar 

  9. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334

    Article  CAS  Google Scholar 

  10. Fischetti MV, Neumayer DA, Cartier EA (2001) Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: the role of remote phonon scattering. J Appl Phys 90:4587–4608

    Article  CAS  Google Scholar 

  11. Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394–399

    Article  CAS  Google Scholar 

  12. Fei Z, Andreev GO, Bao W, Zhang LM, McLeod AS, Wang C, Stewart MK, Zhao Z, Dominguez G, Thiemens M, Fogler MM, Tauber MJ, Castro-Neto AH, Lau CN, Keilmann F, Basov DN (2011) Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett 11:4701–4705

    Article  CAS  Google Scholar 

  13. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634

    Article  CAS  Google Scholar 

  14. Papasimakis N, Luo Z, Shen ZX, Angelis FD, Fabrizio ED, Nikolaenko AE, Zheludev NI (2010) Graphene in a photonic metamaterial. Opt Express 18:8353–8359

    Article  CAS  Google Scholar 

  15. Niu J, Shin YJ, Son J, Lee Y, Ahn JH, Yang H (2012) Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles. Opt Express 20:19690–19696

    Article  CAS  Google Scholar 

  16. Niu J, Shin YJ, Lee Y, Ahn JH, Yang H (2012) Graphene induced tunability of the surface plasmon resonance. Appl Phys Lett 100:061116

    Article  Google Scholar 

  17. Politano A, Chiarello G (2014) Plasmon modes in graphene: status and prospect. Nanoscale 6:10927–10940

    Article  CAS  Google Scholar 

  18. Liu Y, Willis RF, Emtsev KV, Seyller T (2008) Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys Rev B 78:201403

    Article  Google Scholar 

  19. Liu Y, Willis RF (2010) Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys Rev B 81:081406

    Article  Google Scholar 

  20. Allison KF, Mišković ZL (2010) Friction force on slow charges moving over supported graphene. Nanotechnology 21:134017

    Article  CAS  Google Scholar 

  21. Hwang EH, Sensarma R, Das Sarma S (2010) Plasmon-phonon coupling in graphene. Phys Rev B 82:195406

    Article  Google Scholar 

  22. Koch RJ, Seyller T, Schaefer JA (2010) Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem. Phys Rev B 82:201413

    Article  Google Scholar 

  23. Borisov AG, Mertens A, Winter H, Kazansky AK (1999) Evidence for the stopping of slow ions by excitations of optical phonons in insulators. Phys Rev Lett 83:5378–5381

    Article  CAS  Google Scholar 

  24. Villette J, Borisov AG, Khemliche H, Momeni A, Roncin P (2000) Subsurface-channeling-like energy loss structure of the skipping motion on an ionic crystal. Phys Rev Lett 85:3137–3140

    Article  CAS  Google Scholar 

  25. Lucas AA, Sunjic M, Benedek G (2013) Multiple excitation of Fuchs-Kliewer phonons by Ne+ ions back-scattered by the LiF(100) surface at grazing incidence. J Phys Condens Matter 25:355009

    Article  CAS  Google Scholar 

  26. Lucas AA, Sunjic M, Benedek G, Echenique PM (2014) Quantum ricochets: surface capture, release and energy loss of fast ions hitting a polar surface at grazing incidence. New J Phys 16:063015

    Article  Google Scholar 

  27. de Abajo FJG, Echenique PM (1992) Wake potential in the vicinity of a surface. Phys Rev B 46:2663–2675

    Article  Google Scholar 

  28. Burgdörfer J (1992) Dynamic screening and wake effects on electronic excitation in ion-solid and ion-surface collisions. Nucl Inst Methods B 67:1–10

    Article  Google Scholar 

  29. Winter H, Poizat JC, Remillieux J (1992) Coulomb explosion of fast H2 + molecular ions in grazing collisions with a Si(111) surface. Nucl Inst Methods B 67:345–349

    Article  Google Scholar 

  30. Song YH, Wang YN, Mišković ZL (2005) Vicinage effects in energy loss and electron emission during grazing scattering of heavy molecular ions from a solid surface. Phys Rev A 72:012903

    Article  Google Scholar 

  31. Radović I, Borka D, Mišković ZL (2011) Wake effect in doped graphene due to moving external charge. Phys Lett A 375:3720–3725

    Article  Google Scholar 

  32. Despoja V, Dekanić K, Šunjić M, Marušić L (2012) Ab initio study of energy loss and wake potential in the vicinity of a graphene monolayer. Phys Rev B 86:165419

    Article  Google Scholar 

  33. Radović I, Borka Jovanović V, Borka D, Mišković ZL (2012) Interactions of slowly moving charges with graphene: the role of substrate phonons. Nucl Inst Methods B 279:165–168

    Article  Google Scholar 

  34. Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. New J Phys 8:318

    Article  Google Scholar 

  35. Hwang EH, Das Sarma S (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 75:205418

    Article  Google Scholar 

  36. Allison KF, Borka D, Radović I, Hadžievski L, Mišković ZL (2009) Dynamic polarization of graphene by moving external charges: random phase approximation. Phys Rev B 80:195405

    Article  Google Scholar 

  37. Radović I, Borka D, Mišković ZL (2014) Theoretical modeling of experimental HREEL spectra for supported graphene. Phys Lett A 378:2206–2210

    Article  Google Scholar 

  38. Shung KWK (1986) Dielectric function and plasmon structure of stage-1 intercalated graphite. Phys Rev B 34:979–993

    Article  CAS  Google Scholar 

  39. Barlas Y, Pereg-Barnea T, Polini M, Asgari R, MacDonald AH (2007) Chirality and correlations in graphene. Phys Rev Lett 98:236601

    Article  Google Scholar 

  40. Radović I, Borka D, Mišković ZL (2012) Dynamic polarization of graphene by external correlated charges. Phys Rev B 86:125442

    Article  Google Scholar 

  41. Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Williams ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643–1648

    Article  CAS  Google Scholar 

  42. Marinković T, Radović I, Borka D, Mišković ZL (2015) Wake effect in the interaction of slow correlated charges with supported graphene due to plasmon-phonon hybridization. Phys Lett A 379:377–381

    Article  Google Scholar 

  43. Aničić R, Mišković ZL (2013) Effects of the structure of charged impurities and dielectric environment on conductivity of graphene. Phys Rev B 88:205412

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 45005). T.M. acknowledges support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 171023). Z.L.M. also acknowledges support from the Natural Sciences and Engineering Research Council of Canada (Grant No. 249506–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Radović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinković, T., Radović, I., Borka, D. et al. Probing the Plasmon-Phonon Hybridization in Supported Graphene by Externally Moving Charged Particles. Plasmonics 10, 1741–1749 (2015). https://doi.org/10.1007/s11468-015-9993-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9993-3

Keywords

Navigation