Skip to main content
Log in

Combined Photonic-Plasmonic Modes Inside Photonic Crystal Cavities

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, we present a numerical study of the optical properties of a metal nanowire interacting with a localized cavity in a 2D photonic crystal. The nature of the modes, their wavelength and width are investigated as a function of the nanowire’s radius. It is shown in particular that a nanowire with diameter about the lattice constant presents very narrow resonances corresponding to hybrid photonic-plasmonic modes, where increased lifetime is attributed to the decrease of the radiative losses by interaction with the photonic crystal. These results open interesting applications in areas where narrow plasmonic resonances are required, as in localized surface plasmon (LSP) resonance-based biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stefan a Maier (2007) Plasmonics: fundamentals and applications. Springer US, Boston, MA

    Google Scholar 

  2. Kottmann JP, Martin O JF, Smith DR, Sheldon S (2001) Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem Phys Lett 341(1-2):1–6

    Article  CAS  Google Scholar 

  3. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3(4):485–491

    Article  CAS  Google Scholar 

  4. Saison-Francioso OlO, Leveque G, Akjouj A, Pennec Y, Djafari-Rouhani B, Szunerits S, Boukherroub R, Gaetan Lévêque (2012) Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation. Jo Phys Chem C 116(33):17819–17827

    Article  CAS  Google Scholar 

  5. Maurer T, Nicolas R, Lévêque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot J-P, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam P-M, Szunerits S (2013) Enhancing LSPR ensitivity of Au gratings through graphene coupling to Au film. Plasmonics 9(3):507–512

    Article  Google Scholar 

  6. Wen X, Li Guangyuan, Zhang Jun, Zhang Qing, Peng Bo, Wong Lai Mun, Wang Shijie, Xiong Q (2014) Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale 6(1):132–9

    Article  CAS  Google Scholar 

  7. Jaque D, Martínez Maestro L, Del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martín Rodríguez E, García Solé J (2014) Nanoparticles for photothermal therapies. Nanoscale 6(16):9494–530

    Article  CAS  Google Scholar 

  8. Liu S-D, Yang Z, Liu R-P, Li X-Y (2011) Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity

  9. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–57

    Article  CAS  Google Scholar 

  10. Schmidt F-Ph, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR (2012) Dark plasmonic breathing modes in silver nanodisks. Nano Lett 12(11):5780–3

    Article  CAS  Google Scholar 

  11. Verellen N, Dorpe PV, Huang C, Lodewijks K, Vandenbosch G A E, Lagae L, Moshchalkov V V (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397

    Article  CAS  Google Scholar 

  12. Sánchez-Sobrado O, Lozano G, Calvo ME, Sánchez-Iglesias A, M Liz-Marzán L, Míguez H (2011) Interplay of resonant cavity modes with localized surface plasmons: optical absorption properties of Bragg stacks integrating gold nanoparticles. Adv Mater (Deerfield Beach, Fla.) 23(18):2108–12

    Article  Google Scholar 

  13. Jiménez-Solano A, López-López C, Sánchez-Sobrado O, Luque JM, Calvo ME, Fernández-López C, Liz-Marzán LM, Míguez H (2012) Integration of gold nanoparticles in optical resonators. Langmuir: ACS J Surf Colloids 28(24):9161–7

    Article  Google Scholar 

  14. Wang X, Palpant B (2013) Large and ultrafast optical response of a one-dimensional plasmonic–photonic cavity. Plasmonics 8(4):1647–1653

    Article  CAS  Google Scholar 

  15. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  16. Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik JC, Lévêque G, Djafari-Rouhani B (2012) Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Applied Physics Letters 101(6):061109

    Article  Google Scholar 

  17. El-Jallal S, Oudich M, Pennec Y, Djafari-Rouhani B, Makhoute A, Rolland Q, Dupont S, Gazalet J (2014) Optomechanical interactions in two-dimensional Si and GaAs phoXonic cavities. J Phys Condens Matter: Inst Phys J 26(1):015005

    Article  CAS  Google Scholar 

  18. Large N, Saviot L, Margueritat J, Gonzalo J, Afonso CN, Arbouet A, Langot P, Mlayah A, Aizpurua J (2009) Acousto-plasmonic hot spots in metallic nano-objects. Nano Lett 9(11):3732– 8

    Article  CAS  Google Scholar 

  19. Kelf T a, Hoshii W, Otsuka PH, Sakuma H, Veres I a, Cole RM, Mahajan S, Baumberg JJ, Tomoda M, Matsuda O, Wright OB (2013) Mapping gigahertz vibrations in a plasmonic-phononic crystal. New J Phys 15(2):023013

    Article  Google Scholar 

  20. Tripathy S, Marty R, Lin VK, Teo SL, Ye E, Arbouet A, Saviot L, Girard C, Han MY, Mlayah A (2011) Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers. Nano Lett 11(2): 431–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Lévêque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrabti, A., El-Jallal, S., Lévêque, G. et al. Combined Photonic-Plasmonic Modes Inside Photonic Crystal Cavities. Plasmonics 10, 1359–1366 (2015). https://doi.org/10.1007/s11468-015-9932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9932-3

Keywords

Navigation