Skip to main content
Log in

Manipulation of Electrical Field Enhancements and Fano Resonances in Nanoellipsoid/Ring Plasmonic Cavities

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon resonances of an ellipsoid-ring nanostructure with spatial symmetry breaking have been investigated theoretically. In this plasmonic system, the multiple Fano resonances are enhanced and can be tuned effectively by rotating the nanoellipsoid in the cavity of the ring. It is demonstrated that such multiple Fano resonances result from the plasmon coupling between the bright mode of the nanoellipsoid and the dark mode of the nanoring. The dark octupolar and the bright octupolar Fano resonances can be excited by modifying the geometrical parameters of the nanostructure. The asymmetry also allows the generation of strong electric field enhancements in this nanostructure which can be applied in the surface-enhanced spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon sub-wavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  3. Barrow SJ, Funston AM, Wei XZ, Mulvaney P (2013) DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today 8:138–167

    Article  CAS  Google Scholar 

  4. Bustos-Marún RA, Dente AD, Coronado EA, Pastawski HM (2014) Tailoring optical fields emitted by subwavelength nanometric sources. Plasmonics 9:925–934

    Article  Google Scholar 

  5. Bustos-Marún RA, Coronado EA, Pastawski HM (2010) Buffering plasmons in nanoparticle waveguides at the virtual-localized transition. Phys Rev B 82:035434

    Article  Google Scholar 

  6. Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) Surface-enhanced Raman spectroscopy and nanogeometry: the plasmonic origin of SERS. J Phys Chem C 111(49):17985–17988

    Article  CAS  Google Scholar 

  7. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885

    Article  CAS  Google Scholar 

  8. Fei L, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718

    Article  Google Scholar 

  9. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  10. Senyuk B, Evans JS, Ackerman PJ, Lee T, Manna P, Vigderman L, Zubarev ER, Lagemaat J, Smalyukh II (2012) Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals. Nano Lett 12:955–963

    Article  CAS  Google Scholar 

  11. Zhang SP, Xu HX (2012) Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides. ACS Nano 9:8128–8135

    Article  Google Scholar 

  12. Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 11:9989–9995

    Article  Google Scholar 

  13. Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  14. Thyagarajan K, Butet J, Martin OJF (2013) Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Lett 13:1847–1851

    CAS  Google Scholar 

  15. Sheikholeslami SN, Garcia-Etxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett 11:3927–3934

    Article  CAS  Google Scholar 

  16. Feng H, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 11:3983–3988

    Google Scholar 

  17. Zaccaria RP, Angelis DF, Toma A, Razzari L, Alabastri A, Das G, Liberale C, Fabrizio ED (2012) Surface plasmon polariton compression through radially and linearly polarized source. Opt Lett 37:545–547

    Article  Google Scholar 

  18. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 3:1664–1670

    Article  Google Scholar 

  19. Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone SR (2011) Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819–1825

    Article  CAS  Google Scholar 

  20. Dregely D, Hentschel M, Giessen H (2011) Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. ACS Nano 5:8202–8211

    Article  CAS  Google Scholar 

  21. Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 113:4028–4034

    Article  CAS  Google Scholar 

  22. Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas HJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4:819–832

    Article  CAS  Google Scholar 

  23. Li ZP, Shegai T, Haran G, Xu HX (2009) Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3(3):637–642

    Article  CAS  Google Scholar 

  24. Rahmani M, Lukiyanchuk B, Tahmasebi T, Lin Y, Liew T, Hong M (2012) Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers. Appl Phys A Mater Sci Process 107:23–30

    Article  CAS  Google Scholar 

  25. Rahmani M, Lukiyanchuk B, Nguyen TTV, Tahmasebi T, Lin Y, Liew TYF, Hong MH (2011) Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization. Opt Mater Express 1:1409–1415

    Article  Google Scholar 

  26. Brandl DW, Mirin NA, Nordlander P (2006) Plasmon modes of nanosphere trimers and quadrumers. J Phys Chem B 110:12302–12310

    Article  CAS  Google Scholar 

  27. Li JN, Liu TZ, Zheng HR, Gao F, Dong J, Zhang ZL, Zhang ZY (2013) Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers. Opt Express 21(14):17176–17185

    Article  CAS  Google Scholar 

  28. Chang WS, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A plasmonic Fano switch. Nano Lett 12:4977–4982

    Article  CAS  Google Scholar 

  29. Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137

    Article  CAS  Google Scholar 

  30. Liu TZ, Li JN, Gao F, Han QY, Liu SZ (2013) Generation and manipulation of higher order Fano resonances in plasmonic nanodisks with a built-in missing sectorial slice. Europhys Lett 104:47009

    Article  Google Scholar 

  31. Li JN, Liu TZ, Zheng HR, Dong J, He EJ, Gao W, Han QY, Wang C, Wu YN (2014) Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking. Plasmonics 9(6):1439–1445

    Article  CAS  Google Scholar 

  32. Amin M, Bağcı H (2012) Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity. Progr Electromagn Res Lett 130:187–206

    Article  Google Scholar 

  33. Abb M, Wang YD, Albella P, Albella P, Groot CH, Aizpurua J, Muskens OL (2012) Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas. ACS Nano 7:6462–6470

    Article  Google Scholar 

  34. Ho JF, Luk’yanchuk B, Zhang JB (2012) Tunable Fano resonances in silver silica silver multilayer nanoshells. Appl Phys A Mater Sci Process 107:133–137

    Article  CAS  Google Scholar 

  35. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  36. Halas NJ, Lal S, Link S, Chang WS, Natelson D, Hafner JH, Nordlander P (2012) A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv Mater 24:4842–4877

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Fundamental Research Funds for the Central Universities (GK201002038) and Natural Science Basis Research Plan in Shaanxi Province of China (program no. 2011JQ1014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Huo, Y., Liu, T. et al. Manipulation of Electrical Field Enhancements and Fano Resonances in Nanoellipsoid/Ring Plasmonic Cavities. Plasmonics 10, 1041–1048 (2015). https://doi.org/10.1007/s11468-015-9899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9899-0

Keywords

Navigation