Skip to main content
Log in

Coupling of Graphene Plasmonics Modes Induced by Near-Field Perturbation at Terahertz Frequencies

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The coupling between graphene surface plasmonic (GSP) modes and evanescent wave modes induced by near-field perturbation is investigated systematically in the grating-spacer-graphene hybrid system. Simulation results show that the near-field perturbation due to a small change of the geometrical structure disturbs the coupling characteristics, leading to the evolution of the absorption spectra and the spatial energy redistribution of GSP modes. By exploring the physical mechanism, the shift of the resonant absorption frequency can be quantified through the variation of the effective permittivity around graphene, while the first order evanescent wave in the grating plays a fundamental role in determining the absorbance in the coupling process. Further discussion indicates that the different penetration abilities of GSP wave into dielectric and metal grating contribute to the discrepancy of the energy distribution of GSP modes. Our study provides new physical insight and promotes a further step for the design of plasmonics devices at terahertz frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong S-Y, Dadap JI, Petrone N, Yeh P-C, Hone J, Osgood RM (2013) Optical third-harmonic generation in graphene. Physical Review X 3(2):021014. doi:10.1103/PhysRevX.3.021014

    Article  Google Scholar 

  2. Koppens FH, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano letters 11(8):3370–3377. doi:10.1021/nl201771h

    Article  CAS  Google Scholar 

  3. Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, Garcia de Abajo FJ, Hillenbrand R, Koppens FH (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405):77–81. doi:10.1038/nature11254

    CAS  Google Scholar 

  4. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano letters 10(7):2342–2348. doi:10.1021/nl9041033

    Article  CAS  Google Scholar 

  5. Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nature Photonics 4(5):297–301. doi:10.1038/nphoton.2010.40

    Article  CAS  Google Scholar 

  6. Willets KA (2013) Super-resolution imaging of interactions between molecules and plasmonic nanostructures. Phys Chem Chem Phys 15(15):5345–5354. doi:10.1039/c3cp43882a

    Article  CAS  Google Scholar 

  7. You B, Peng CC, Jhang JS, Chen HH, Yu CP, Lai WC, Liu TA, Peng JL, Lu JY (2014) Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing. Opt Express 22(9):11340–11350. doi:10.1364/OE.22.011340

    Article  Google Scholar 

  8. Ramanandan GKP, Adam AJL, Planken PCM (2014) Enhanced terahertz emission from schottky junctions using plasmonic nanostructures. ACS Photonics 1(11):1165–1172. doi:10.1021/ph500251a

    Article  CAS  Google Scholar 

  9. Vinnakota RK, Genov DA (2014) Terahertz optoelectronics with surface plasmon polariton diode. Sci Rep 4:4899. doi:10.1038/srep04899

    Article  CAS  Google Scholar 

  10. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758. doi:10.1038/nphoton.2012.262

    Article  CAS  Google Scholar 

  11. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2):1086–1101. doi:10.1021/nn406627u

    Article  CAS  Google Scholar 

  12. Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7(5):394–399. doi:10.1038/nphoton.2013.57

    Article  CAS  Google Scholar 

  13. Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Physical Review B 80 (24):245435. doi:10.1103/PhysRevB.80.245435

  14. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82–85. doi:10.1038/nature11253

    CAS  Google Scholar 

  15. Zhu X, Yan W, Uhd Jepsen P, Hansen O, Asger Mortensen N, Xiao S (2013) Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating. Appl Phys Lett 102(13):131101. doi:10.1063/1.4799173

    Article  Google Scholar 

  16. Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, Garcia de Abajo FJ, Nordlander P, Zhu X, Halas NJ (2014) Active tunable 002.absorption enhancement with graphene nanodisk arrays. Nano letters 14(1):299–304. doi:10.1021/nl404042h

    Article  CAS  Google Scholar 

  17. Li H-J, Wang L-L, Liu J-Q, Huang Z-R, Sun B, Zhai X (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 103(21):211104. doi:10.1063/1.4831741

    Article  Google Scholar 

  18. Chu H-S, How Gan C (2013) Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl Phys Lett 102(23):231107. doi:10.1063/1.4810003

    Article  Google Scholar 

  19. Nikitin AY, Guinea F, Martin-Moreno L (2012) Resonant plasmonic effects in periodic graphene antidot arrays. Appl Phys Lett 101(15):151119. doi:10.1063/1.4760230

    Article  Google Scholar 

  20. Sreekanth KV, Zeng S, Shang J, Yong KT, Yu T (2012) Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Sci Rep 2:737. doi:10.1038/srep00737

    Article  Google Scholar 

  21. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813. doi:10.1021/nn301888e

    Article  CAS  Google Scholar 

  22. Chen L, Zhang T, Li X, Wang G (2013) Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate. Opt Express 21(23):28628–28637. doi:10.1364/OE.21.028628

    Article  Google Scholar 

  23. Tang L, Du J, Du C, Zhu P, Shi H (2014) Scaling phenomenon of graphene surface plasmon modes in grating-spacer-graphene hybrid systems. Opt Express 22(17):20214–20222. doi:10.1364/OE.22.020214

    Article  Google Scholar 

  24. Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111. doi:10.1063/1.3698133

    Article  Google Scholar 

  25. Capmany J, Domenech D, Muñoz P (2014) Silicon graphene waveguide tunable broadband microwave photonics phase shifter. Opt Express 22(7):8094. doi:10.1364/oe.22.008094

    Article  CAS  Google Scholar 

  26. Auditore A, de Angelis C, Locatelli A, Aceves AB (2013) Tuning of surface plasmon polaritons beat length in graphene directional couplers. Opt Express 38(20):4228–4231. doi:10.1364/OL.38.004228

    CAS  Google Scholar 

  27. Raman A, Fan S (2011) Perturbation theory for plasmonic modulation and sensing. Phys Rev B 83:20. doi:10.1103/PhysRevB.83.205131

    Article  Google Scholar 

  28. Ordal MA, Bell RJ, Alexander RW, Long LL, Querry MR (1985) Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl Optics 24(24):4493–4499. doi:10.1364/AO.24.004493

    Article  CAS  Google Scholar 

  29. A Y (1973) Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics 9 (9):919-933. doi:10.1109/JQE.1973.1077767

  30. Peres NM, Bludov YV, Ferreira A, Vasilevskiy MI (2013) Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range. J Phys Condens Matter: an Inst of Phys J 25(12):125303. doi:10.1088/0953-8984/25/12/125303

    Article  CAS  Google Scholar 

  31. Li P, Taubner T (2012) Broadband subwavelength imaging using a tunable graphene-lens. ACS Nano 6(11):10107–10114

    Article  CAS  Google Scholar 

  32. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7(5):330–334. doi:10.1038/nnano.2012.59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National High Technology Research and Development Program of China (2015AA034801), National Natural Science Foundation of China (No.61405021, 11374359), Specialized Research Fund for the Doctoral Program of Higher Education (20120191120021), Natural Science Foundation of Chongqing, China (cstc2014jcyjA40045), and the Fundamental Research Funds for the Central Universities (CDJZR12120004, 106112013CDJZR120006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Nong, J., Tang, L. et al. Coupling of Graphene Plasmonics Modes Induced by Near-Field Perturbation at Terahertz Frequencies. Plasmonics 11, 1109–1118 (2016). https://doi.org/10.1007/s11468-015-0149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0149-2

Keywords

Navigation