Skip to main content
Log in

Photonic Crystal Fiber Polarization Filter Based on Coupling Between Core Mode and SPP Mode

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A polarization filter at the two communication windows of 1.31 and 1.55 μm based on photonic crystal fiber (PCF) coated by nanoscale gold film is proposed. The effects of geometrical parameters of the PCF on the performances of polarization filter are evaluated by finite element method (FEM). Numerical simulations reveal that the polarization filter possesses ultra-short length of 400 μm and high extinction ratios of 41 and −150 dB at the communication wavelengths of 1.31 and 1.55 μm respectively. The bandwidth of extinction ratio (ER) better than 20 dB is 58 nm at the communication window of 1.31 μm. Moreover, the bandwidth of ER better than −20 dB is 164 nm at the communication window of 1.55 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Russell PSJ (2006) Photonic crystal fibers. J Lightwave Technol 24(12):4729–4749

    Article  Google Scholar 

  2. Liu Q, Li SG, Fan Z, Zhang W, Zi J, Li H (2015) Numerical analysis of high extinction ratio photonic crystal fiber polarization splitter based on ZnTe glass. Opt Fiber Technol 21:193–197

    Article  CAS  Google Scholar 

  3. Liu Q, Li Q, Fan Z, Zhang W, Li H, Zi J, An GW (2015) Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber. Opt Commun 334:46–50

    Article  CAS  Google Scholar 

  4. Liu Q, Li SG, Chen HL, Fan Z, Li JS (2015) Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode. IEEE Photon J 7(2):1–9

    Google Scholar 

  5. Hameed MFO, Obayya SSA (2011) Design of passive polarization rotator based on silica photonic crystal fiber. Opt Lett 36(16):3133–3135

    Article  CAS  Google Scholar 

  6. Chen MY, Zhou J, Pun EY (2009) A novel WDM component based on a three-core photonic crystal fiber. J Lightwave Technol 27(13):2343–2347

    Article  Google Scholar 

  7. Rosenstein B, Shirakov A, Belker D, Ishaaya AA (2014) The 0.7 MW output power from a two-arm coherently combined Q-switched photonic crystal fiber laser. Opt Express 22(6):6416–6421

    Article  Google Scholar 

  8. Robin C, Dajani I, Pulford B (2014) Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Opt Lett 39(3):666–669

    Article  CAS  Google Scholar 

  9. Wadsworth WJ, Knight JC, Reeves WH, Russell PSJ, Arriaga J (2000) Yb3+-doped photonic crystal fibre laser. Electron Lett 30(17):1452–1454

    Article  Google Scholar 

  10. Sazio PJ, Amezcua-Correa A, Finlayson CE, Hayes JR, Scheidemantel TJ, Baril NF, Badding JV, Jackson BR, Won D, Zhang F, Margine ER, Gopalan V, Crespi VH, Badding JV (2006) Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767):1583–1586

    Article  CAS  Google Scholar 

  11. Wang Y, Yang M, Wang DN, Liao CR (2011) Selectively infiltrated phoyonic crystal fiber with ultrahigh temperature sensitivity. IEEE Photon Technol Lett 23(20):1520–1522

    Article  Google Scholar 

  12. Zhang X, Wang R, Cox FM, Kuhlmey BT, Large MCJ (2007) Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt Express 15(24):16270–16278

    Article  CAS  Google Scholar 

  13. Du Y, Li SG, Liu S, Zhu XP, Zhang XX (2012) Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber. Appl Phys B 109(1):65–74

    Article  CAS  Google Scholar 

  14. Xue J, Li SG, Xiao YZ, Qin W, Xin X, Zhu XP (2013) Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt Express 21(11):13733–13740

    Article  Google Scholar 

  15. An G, Li SG, Zhang W, Fan Z, Bao Y (2014) A polarization filter of gold-filled photonic crystal fiber with regular triangular and rectangular lattices. Opt Commun 331:316–319

    Article  CAS  Google Scholar 

  16. Zhang W, Li SG, An GW, Fan ZK, Bao YJ (2014) Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires. Appl Optics 53(11):2441–2445

    Article  CAS  Google Scholar 

  17. Liu Q, Li SG, Li H, Zi J, Zhang W, Fan ZK, An G W, Bao YJ (2015) Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter. Plasmonics:1–9

  18. Agrawal GP (1989) Nonlinear fiber optics. Academic Press, CA

    Google Scholar 

  19. Vial A, Grimault A, Macas D, Barchiesi D, Chapelle M (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8)

  20. Zhang Z, Shi Y, Bian B, Lu J (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16(3):1915–1922

    Article  Google Scholar 

  21. Chen L, Zhang W, Zhang Z, Liu Y, Sieg J, Zhang L, Zhou Q, Wang L, Wang B, Yan T (2014) Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance. IEEE Photon J 6(4):1–9

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 61178026 and 61475134), and the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, S., Li, J. et al. Photonic Crystal Fiber Polarization Filter Based on Coupling Between Core Mode and SPP Mode. Plasmonics 11, 857–863 (2016). https://doi.org/10.1007/s11468-015-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0119-8

Keywords

Navigation